Mihailova I.Radev L.Aleksandrova V.Colova I.Salvado I.M.M.Fernandes M.H.V.2024-07-162024-07-162024-07-162024-07-162015-01-011314-79781314-7471SCOPUS_ID:84937891649https://rlib.uctm.edu/handle/123456789/1107Several types of glass-ceramics in the CaO - MgO - SiO2 system are shown to be bioactive, biocompatible and exhibiting various advantages for bone regeneration. A polyphase calcium-magnesium-silicate glass-ceramics is prepared by the sol-gel method including a two-step thermal treatment procedure aiming to investigate the effect of its phase composition on the in-vitro bioactivity observed. The dried gels of a chemical composition 3CaO.MgO.2SiO2 corresponding to merwinite are thermally treated at 700°C and 1100°C. The structural behavior of the synthesized samples is examined by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Larnite as the main crystalline phase, accompanied by merwinite, akermanite and periclase are detected after heat treatment at 1100°C. The in-vitro bioactivity of the glass-ceramics is detected by investigating the apatite formation ability in Simulated Body Fluid (SBF) for different times of soaking. The changes on the surface of the immersed samples and the formation of Mg- and Si-substituted carbonated apatites are verified by FTIR, SEM and Energy Dispersive Spectroscopy (EDS) techniques. The dissolution behavior of the glass-ceramics in SBF is also carried out by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The results indicate fast degradation in SBF and high reactivity of the polyphase glass-ceramics. The latter might be used as a bioactive implant material.enCarbonate - apatite forming ability of polyphase glass - ceramics in the CaO - MgO - SiO2 systemArticle