Browsing by Author "Angelova N.A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Different nonlinear regression techniques and sensitivity analysis as tools to optimize oil viscosity modeling(2021-10-01) Stratiev D.; Nenov S.; Nedanovski D.; Shishkova I.; Dinkov R.; Stratiev D.D.; Stratiev D.D.; Sotirov S.; Sotirova E.; Atanassova V.; Atanassov K.; Yordanov D.; Angelova N.A.; Ribagin S.; Todorova-Yankova L.Four nonlinear regression techniques were explored to model gas oil viscosity on the base of Walther’s empirical equation. With the initial database of 41 primary and secondary vacuum gas oils, four models were developed with a comparable accuracy of viscosity calculation. The Akaike information criterion and Bayesian information criterion selected the least square relative errors (LSRE) model as the best one. The sensitivity analysis with respect to the given data also revealed that the LSRE model is the most stable one with the lowest values of standard deviations of derivatives. Verification of the gas oil viscosity prediction ability was carried out with another set of 43 gas oils showing remarkably better accuracy with the LSRE model. The LSRE was also found to predict better viscosity for the 43 test gas oils relative to the Aboul Seoud and Moharam model and the Kotzakoulakis and George.Item Empirical Modeling of Viscosities and Softening Points of Straight-Run Vacuum Residues from Different Origins and of Hydrocracked Unconverted Vacuum Residues Obtained in Different Conversions(2022-03-01) Stratiev D.; Nenov S.; Nedanovski D.; Shishkova I.; Dinkov R.; Stratiev D.D.; Stratiev D.D.; Sotirov S.; Sotirova E.; Atanassova V.; Ribagin S.; Atanassov K.; Yordanov D.; Angelova N.A.; Todorova-Yankova L.The use of hydrocracked and straight-run vacuum residues in the production of road pavement bitumen requires a good understanding of how the viscosity and softening point can be modeled and controlled. Scientific reports on modeling of these rheological properties for hydroc-racked and straight-run vacuum residues are scarce. For that reason, 30 straight-run vacuum residues and 33 hydrocracked vacuum residues obtained in a conversion range of 55–93% were investigated, and the characterization data were employed for modeling purposes. An intercriteria analysis was applied to investigate the statistically meaningful relations between the studied vacuum residue properties. It revealed that the straight-run and hydrocracked vacuum residues were completely different, and therefore their viscosity and softening point should be separately modeled. Through the use of nonlinear regression by applying CAS Maple and NLPSolve with the modified Newton iterative method and the vacuum residue bulk properties the viscosity and softening point were modeled. It was found that the straight-run vacuum residue viscosity was best modeled from the molecular weight and specific gravity, whereas the softening point was found to be best modeled from the molecular weight and C7-asphaltene content. The hydrocracked vacuum residue viscosity and softening point were modeled from a single property: the Conradson carbon content. The vacuum residue viscosity models developed in this work were found to allow prediction of the asphaltene content from the molecular weight and specific gravity with an average absolute relative error of 20.9%, which was lower of that of the model of Samie and Mortaheb (Fuel. 2021, 305, 121609)—32.6%.