Browsing by Author "Atanassova M."
Now showing 1 - 20 of 59
Results Per Page
Sort Options
Item Aliquat 336 in Solvent Extraction Chemistry of Metallic ReO4− Anions(2024-05-01) Atanassova M.; Petkova Z.; Kurteva V.A study of the liquid–liquid extraction of ReO4− anions from hydrochloric acid solutions using the ionic liquid Aliquat 336 (QCl: trialkyl(C8–C10)methylammonium chloride) via the well-known method of slope analysis along with the determination of the process parameters is presented. This study employs CCl4, CHCl3 and C6H12 as diluents. This study was carried out at room temperature (22 ± 2) °C and an aqueous/organic volumetric ratio of unity. The ligand effect on the complexation properties of ReO4− is quantitatively assessed in different organic media. The organic extract in chloroform media is examined through 1H, 13C and 15N NMR analysis as well as the HRMS technique and UV-Vis spectroscopy in order to view the anion exchange and ligand coordination in the organic phase solution. Final conclusions are given highlighting the role of the molecular diluent in complexation processes and selectivity involving ionic liquid ligands and various metal s-, p-, d- and f-cations. ReO4− ions have shown one of the best solvent extraction behaviors compared to other ions. For instance, the Aliquat 336 derivative bearing Cl− functions shows strongly enhanced extraction as well as pronounced separation abilities towards ReO4−.Item An Overview of Pomegranate Peel: A Waste Treasure for Antiviral Activity(2022-01-01) Hikal W.M.; Said-Al Ahl H.A.H.; Tkachenko K.G.; Mahmoud A.A.; Bratovcic A.; Hodžić S.; Atanassova M.Agricultural waste has always been a global problem that causes environmental pollution, and thanks to the efforts of scientists, this agricultural waste has become not a neglected product, but rather a source of many effective chemical compounds that have industrial, pharmaceutical and food applications. Viral disease therapy has attracted a great deal of scientific interest worldwide. Therefore, the pace of research is increasing for effective and safe treatment. The potential inhibitory activity of pomegranate peel extract polyphenols against virus for effective viral disease therapy has attracted a great deal of scientific interest. The aim of this review was to present an overview of the pomegranate peel effects on viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Influenza virus, Norovirus, Adenovirus, Herpes simplex virus, Coronavirus disease (COVID-19). Pomegranate is consumed as fresh fruit and juice for its reported health benefits as antioxidant, antidiabetic, hypolipidemic, antibacterial, anti-inflammatory, antiviral, anticarcinogenic activities, and improves cardiovascular as well as oral health. The health benefits of pomegranate have been attributed to its wide range of phytochemicals, which are predominantly polyphenols, ellagitannins, anthocyanins, and other polyphenols. Instead of the pomegranate peel being a neglected product, it is considered as a promising antiviral agent which also offers other health benefits without side effects.Item An Overview of Pomegranate Peel: A Waste Treasure for Antiviral Activity(2022-01-01) Hikal W.M.; Said-Al Ahl H.A.H.; Tkachenko K.G.; Mahmoud A.A.; Bratovcic A.; Hodžić S.; Atanassova M.Agricultural waste has always been a global problem that causes environmental pollution, and thanks to the efforts of scientists, this agricultural waste has become not a neglected product, but rather a source of many effective chemical compounds that have industrial, pharmaceutical and food applications. Viral disease therapy has attracted a great deal of scientific interest worldwide. Therefore, the pace of research is increasing for effective and safe treatment. The potential inhibitory activity of pomegranate peel extract polyphenols against virus for effective viral disease therapy has attracted a great deal of scientific interest. The aim of this review was to present an overview of the pomegranate peel effects on viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Influenza virus, Norovirus, Adenovirus, Herpes simplex virus, Coronavirus disease (COVID-19). Pomegranate is consumed as fresh fruit and juice for its reported health benefits as antioxidant, antidiabetic, hypolipidemic, antibacterial, anti-inflammatory, antiviral, anticarcinogenic activities, and improves cardiovascular as well as oral health. The health benefits of pomegranate have been attributed to its wide range of phytochemicals, which are predominantly polyphenols, ellagitannins, anthocyanins, and other polyphenols. Instead of the pomegranate peel being a neglected product, it is considered as a promising antiviral agent which also offers other health benefits without side effects.Item Apium plants: Beyond simple food and phytopharmacological applications(2019-09-01) Salehi B.; Venditti A.; Frezza C.; Yücetepe A.; Altuntaş Ü.; Uluata S.; Butnariu M.; Sarac I.; Shaheen S.; Petropoulos S.A.; Matthews K.R.; Kiliç C.S.; Atanassova M.; Adetunji C.O.; Ademiluyi A.O.; Özçelik B.; Fokou P.V.T.; Martins N.; Cho W.C.; Sharifi-Rad J.Apium plants belong to the Apiaceae family and are included among plants that have been in use in traditional medicine for thousands of years worldwide, including in the Mediterranean, as well as the tropical and subtropical regions of Asia and Africa. Some highlighted medical benefits include prevention of coronary and vascular diseases. Their phytochemical constituents consist of bergapten, flavonoids, glycosides, furanocoumarins, furocoumarin, limonene, psoralen, xanthotoxin, and selinene. Some of their pharmacological properties include anticancer, antioxidant, antimicrobial, antifungal, nematocidal, anti-rheumatism, antiasthma, anti-bronchitis, hepatoprotective, appetizer, anticonvulsant, antispasmodic, breast milk inducer, anti-jaundice, antihypertensive, anti-dysmenorrhea, prevention of cardiovascular diseases, and spermatogenesis induction. The present review summarizes data on ecology, botany, cultivation, habitat, medicinal use, phytochemical composition, preclinical and clinical pharmacological efficacy of Apium plants and provides future direction on how to take full advantage of Apium plants for the optimal benefit to mankind.Item Apium plants: Beyond simple food and phytopharmacological applications(2019-09-01) Salehi B.; Venditti A.; Frezza C.; Yücetepe A.; Altuntaş Ü.; Uluata S.; Butnariu M.; Sarac I.; Shaheen S.; Petropoulos S.A.; Matthews K.R.; Kiliç C.S.; Atanassova M.; Adetunji C.O.; Ademiluyi A.O.; Özçelik B.; Fokou P.V.T.; Martins N.; Cho W.C.; Sharifi-Rad J.Apium plants belong to the Apiaceae family and are included among plants that have been in use in traditional medicine for thousands of years worldwide, including in the Mediterranean, as well as the tropical and subtropical regions of Asia and Africa. Some highlighted medical benefits include prevention of coronary and vascular diseases. Their phytochemical constituents consist of bergapten, flavonoids, glycosides, furanocoumarins, furocoumarin, limonene, psoralen, xanthotoxin, and selinene. Some of their pharmacological properties include anticancer, antioxidant, antimicrobial, antifungal, nematocidal, anti-rheumatism, antiasthma, anti-bronchitis, hepatoprotective, appetizer, anticonvulsant, antispasmodic, breast milk inducer, anti-jaundice, antihypertensive, anti-dysmenorrhea, prevention of cardiovascular diseases, and spermatogenesis induction. The present review summarizes data on ecology, botany, cultivation, habitat, medicinal use, phytochemical composition, preclinical and clinical pharmacological efficacy of Apium plants and provides future direction on how to take full advantage of Apium plants for the optimal benefit to mankind.Item Are fancy acidic or neutral ligands really needed for synergism in ionic liquids? A comparative study of lanthanoid extraction in CHCl3 and an ionic liquid(2015-07-27) Atanassova M.; Kurteva V.; Lubenov L.; Varbanov S.; Billard I.The study of trivalent lanthanoid (La, Nd, Eu, Ho and Lu) extraction by two individual ligands, one acidic such as a pyrazolone derivative, 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one (HL), and one neutral such as 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis-(dimethylphosphinoylmethoxy)calix[4]arene (SIV), was performed in CHCl3 and in one ionic liquid, IL 1-methyl-1,3-butylimidazolium-bis(trifluoromethanesulfonyl)imide ([C1C4im][Tf2N]), in order to establish and examine the impact of the diluent on individual and synergistic extraction processes. Chloride aqueous medium and constant ionic strength μ = 0.1 M were set in both cases. The parameters of the extraction processes were determined. Comparison between the two diluents was made on the basis of (i) composition of the extracted species: LnL3·HL in CHCl3vs. LnL3 in IL with HL as a single extractant (L- represents the HL anion), and LnL3·SIV in the presence of the phosphorus-containing calix[4]arene in both diluents; and (ii) values of the equilibrium constants and the synergistic enhancements; the separation factors between metals were evaluated as well. The IL medium appears far superior to the molecular solvent in terms of individual and overall synergistic extraction efficiencies. However, the huge differences in extraction efficiencies observed in CHCl3 for chemically different ligands are erased in the IL medium, thus modifying the lever arms on which chemists should rely in order to obtain even better extracting systems in ionic liquid media.Item Assessment of the Equilibrium Constants of Mixed Complexes of Rare Earth Elements with Acidic (Chelating) and Organophosphorus Ligands(2022-11-01) Atanassova M.A survey of the experimental equilibrium constants in solution for the mixed complexes of 4f ions with acidic (chelating) and O-donor organophosphorus ligands published in the period between 1954 and 2022 is presented. These data are widely used in both analytical and solvent extraction chemistry. Important data evaluation criteria involved the specification of the essential reactions, process conditions and the correctness of techniques and calculations used, as well as appropriate equilibrium analysis of experimental data. Higher-quality data have been evaluated, compiled and presented herein, providing a synoptic view of the unifying theme in this area of research, i.e., synergism.Item Banana Peels: A Waste Treasure for Human Being(2022-01-01) Hikal W.M.; Said-Al Ahl H.A.H.; Bratovcic A.; Tkachenko K.G.; Sharifi-Rad J.; Kačániová M.; Elhourri M.; Atanassova M.In recent years, scientists' interest in agricultural waste has increased, and the waste has become attractive to explore and benefit from, rather than being neglected waste. Banana peels have attracted the attention of researchers due to their bioactive chemical components, so we focused on this review article on the antioxidant and antimicrobial activities of banana peels that can be used as good sources of natural antioxidants and for pharmaceutical purposes in treating various diseases. Banana is an edible fruit belonging to the genus Musa (Musaceae), cultivated in tropical and subtropical regions. Banana peels are used as supplementary feed for livestock in their cultivation areas. Its massive by-products are an excellent source of high-value raw materials for other industries by recycling agricultural waste. Hence, the goal is to use banana by-products in various food and nonfood applications and sources of natural bioactive compounds. It can be concluded that banana peel can be successfully used in food, pharmaceutical, and other industries. Therefore, banana residues may provide new avenues and research areas for the future.Item Banana Peels: A Waste Treasure for Human Being(2022-01-01) Hikal W.M.; Said-Al Ahl H.A.H.; Bratovcic A.; Tkachenko K.G.; Sharifi-Rad J.; Kačániová M.; Elhourri M.; Atanassova M.In recent years, scientists' interest in agricultural waste has increased, and the waste has become attractive to explore and benefit from, rather than being neglected waste. Banana peels have attracted the attention of researchers due to their bioactive chemical components, so we focused on this review article on the antioxidant and antimicrobial activities of banana peels that can be used as good sources of natural antioxidants and for pharmaceutical purposes in treating various diseases. Banana is an edible fruit belonging to the genus Musa (Musaceae), cultivated in tropical and subtropical regions. Banana peels are used as supplementary feed for livestock in their cultivation areas. Its massive by-products are an excellent source of high-value raw materials for other industries by recycling agricultural waste. Hence, the goal is to use banana by-products in various food and nonfood applications and sources of natural bioactive compounds. It can be concluded that banana peel can be successfully used in food, pharmaceutical, and other industries. Therefore, banana residues may provide new avenues and research areas for the future.Item Bioactive compounds and health benefits of Artemisia species(2019-01-01) Nigam M.; Atanassova M.; Mishra A.P.; Pezzani R.; Devkota H.P.; Plygun S.; Salehi B.; Setzer W.N.; Sharifi-Rad J.Artemisia L. is a genus of small herbs and shrubs found in northern temperate regions. It belongs to the important family Asteraceae, one of the most numerous plant groupings, which comprises about 1000 genera and over 20000 species. Artemisia has a broad spectrum of bioactivity, owing to the presence of several active ingredients or secondary metabolites, which work through various modes of action. It has widespread pharmacological activities and has been used as traditional medicine since ancient times as an anthelmintic, antispasmodic, antirheumatic, and antibacterial agent and for the treatment of malaria, hepatitis, cancer, inflammation, and menstrual-related disorders. This review comprises the updated information about the ethnomedical uses and health benefits of various Artemisia spp. and general information about bioactive compounds and free radicals.Item Bioactive compounds and health benefits of Artemisia species(2019-01-01) Nigam M.; Atanassova M.; Mishra A.P.; Pezzani R.; Devkota H.P.; Plygun S.; Salehi B.; Setzer W.N.; Sharifi-Rad J.Artemisia L. is a genus of small herbs and shrubs found in northern temperate regions. It belongs to the important family Asteraceae, one of the most numerous plant groupings, which comprises about 1000 genera and over 20000 species. Artemisia has a broad spectrum of bioactivity, owing to the presence of several active ingredients or secondary metabolites, which work through various modes of action. It has widespread pharmacological activities and has been used as traditional medicine since ancient times as an anthelmintic, antispasmodic, antirheumatic, and antibacterial agent and for the treatment of malaria, hepatitis, cancer, inflammation, and menstrual-related disorders. This review comprises the updated information about the ethnomedical uses and health benefits of various Artemisia spp. and general information about bioactive compounds and free radicals.Item Biochemical Profile and In Vitro Therapeutic Properties of Two Euhalophytes, Halocnemum strobilaceum Pall. and Suaeda fruticosa (L.) Forske., Grown in the Sabkha Ecosystem in the Algerian Sahara(2023-04-01) Gheraissa N.; Chemsa A.E.; Cherrada N.; Erol E.; Elsharkawy E.R.; Ghemam-Amara D.; Zeghoud S.; Rebiai A.; Messaoudi M.; Sawicka B.; Atanassova M.; Abdel-Kader M.S.This study reports the biochemical profile and in vitro biological activities of the aerial part of two shrubs: Halocnemum strobilaceum and Suaeda fruticosa, a halophytes species native to saline habitats. The biomass was evaluated by determining its physiological properties and approximate composition. Hydro-methanolic extracts from Halocnemum strobilaceum and Suaeda fruticosa have been investigated for the inhibition of bacterial growth, the protection of proteins (albumin) from denaturation, and cytotoxicity to hepatocellular carcinomas (Huh-7 and HepG2). Their antioxidant activity was evaluated by five tests, including one that examined their ability to inhibit hydrogen peroxide (H2O2)-induced hemolysis. The profile of their phenolic compounds was also determined. These two euhalophytes had a high moisture content, high levels of photosynthetic pigments, elevated levels of ash and protein, low oxidative damage indices, MDA (Malondialdehyde) and proline, and low lipids levels. Their content was also characterized by a moderate acidity with good electrical conductivity. They contained abundant levels of phytochemicals and varied phenolic contents. Reverse phase high performance liquid chromatography (RP-HPLC) analysis revealed the presence of caffeic acid, p-coumaric acid, rutin, and quercetin in both plant extracts. On the pharmaceutical level, the two euhalophytes had anti-inflammatory, antibacterial, antioxidant, and cytotoxic properties, and therefore it was recommended to isolate and identify biologically active compounds from these plants and evaluate them in vivo.Item Biochemical Profile and In Vitro Therapeutic Properties of Two Euhalophytes, Halocnemum strobilaceum Pall. and Suaeda fruticosa (L.) Forske., Grown in the Sabkha Ecosystem in the Algerian Sahara(2023-04-01) Gheraissa N.; Chemsa A.E.; Cherrada N.; Erol E.; Elsharkawy E.R.; Ghemam-Amara D.; Zeghoud S.; Rebiai A.; Messaoudi M.; Sawicka B.; Atanassova M.; Abdel-Kader M.S.This study reports the biochemical profile and in vitro biological activities of the aerial part of two shrubs: Halocnemum strobilaceum and Suaeda fruticosa, a halophytes species native to saline habitats. The biomass was evaluated by determining its physiological properties and approximate composition. Hydro-methanolic extracts from Halocnemum strobilaceum and Suaeda fruticosa have been investigated for the inhibition of bacterial growth, the protection of proteins (albumin) from denaturation, and cytotoxicity to hepatocellular carcinomas (Huh-7 and HepG2). Their antioxidant activity was evaluated by five tests, including one that examined their ability to inhibit hydrogen peroxide (H2O2)-induced hemolysis. The profile of their phenolic compounds was also determined. These two euhalophytes had a high moisture content, high levels of photosynthetic pigments, elevated levels of ash and protein, low oxidative damage indices, MDA (Malondialdehyde) and proline, and low lipids levels. Their content was also characterized by a moderate acidity with good electrical conductivity. They contained abundant levels of phytochemicals and varied phenolic contents. Reverse phase high performance liquid chromatography (RP-HPLC) analysis revealed the presence of caffeic acid, p-coumaric acid, rutin, and quercetin in both plant extracts. On the pharmaceutical level, the two euhalophytes had anti-inflammatory, antibacterial, antioxidant, and cytotoxic properties, and therefore it was recommended to isolate and identify biologically active compounds from these plants and evaluate them in vivo.Item Carica papaya L. Leaves: Deciphering Its Antioxidant Bioactives, Biological Activities, Innovative Products, and Safety Aspects(2022-01-01) Sharma A.; Sharma R.; Sharma M.; Kumar M.; Barbhai M.D.; Lorenzo J.M.; Sharma S.; Samota M.K.; Atanassova M.; Caruso G.; Naushad M.; Radha; Chandran D.; Prakash P.; Hasan M.; Rais N.; Dey A.; Mahato D.K.; Dhumal S.; Singh S.; Senapathy M.; Rajalingam S.; Visvanathan M.; Saleena L.A.K.; Mekhemar M.The prevalence of viral infections, cancer, and diabetes is increasing at an alarming rate around the world, and these diseases are now considered to be the most serious risks to human well-being in the modern period. There is a widespread practice in Asian countries of using papaya leaves (C. papaya L.) as herbal medicine, either alone or in combination with prescribed medications, to treat a variety of ailments. The importance of conducting the necessary descriptive studies in order to determine the safety of papaya leaf consumption is also emphasized in the context of their application in the healthcare sector. Electronic databases such as Google Scholar, Scopus, and PubMed were used to gather information on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The literature was gathered from publications on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The antidengue, anticancer, antidiabetic, neuroprotective, and anti-inflammatory effects of papaya leaves discussed in this article are supported by evidence from preclinical, in vivo, in vitro, and clinical trial studies, as well as from other sources. Leaves have been investigated for their mechanism of action as well as their potential to be used in the development of novel herbal products for the health business. According to the reports gathered, only a small number of research demonstrated that leaf extract at high concentrations was hazardous to certain organs. The collective literature reviewed in this review provides insights into the use of papaya leaves as a cure for epidemic diseases, highlighting the phytochemical composition and pharmacological attributes of papaya leaves, as well as the results of various preclinical and clinical studies that have been conducted so far on the subject. The review clearly demonstrates the successful medical evidence for the use of papaya leaf extracts in the healthcare system as a supplemental herbal medication in a variety of clinical settings.Item Carica papaya L. Leaves: Deciphering Its Antioxidant Bioactives, Biological Activities, Innovative Products, and Safety Aspects(2022-01-01) Sharma A.; Sharma R.; Sharma M.; Kumar M.; Barbhai M.D.; Lorenzo J.M.; Sharma S.; Samota M.K.; Atanassova M.; Caruso G.; Naushad M.; Radha; Chandran D.; Prakash P.; Hasan M.; Rais N.; Dey A.; Mahato D.K.; Dhumal S.; Singh S.; Senapathy M.; Rajalingam S.; Visvanathan M.; Saleena L.A.K.; Mekhemar M.The prevalence of viral infections, cancer, and diabetes is increasing at an alarming rate around the world, and these diseases are now considered to be the most serious risks to human well-being in the modern period. There is a widespread practice in Asian countries of using papaya leaves (C. papaya L.) as herbal medicine, either alone or in combination with prescribed medications, to treat a variety of ailments. The importance of conducting the necessary descriptive studies in order to determine the safety of papaya leaf consumption is also emphasized in the context of their application in the healthcare sector. Electronic databases such as Google Scholar, Scopus, and PubMed were used to gather information on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The literature was gathered from publications on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The antidengue, anticancer, antidiabetic, neuroprotective, and anti-inflammatory effects of papaya leaves discussed in this article are supported by evidence from preclinical, in vivo, in vitro, and clinical trial studies, as well as from other sources. Leaves have been investigated for their mechanism of action as well as their potential to be used in the development of novel herbal products for the health business. According to the reports gathered, only a small number of research demonstrated that leaf extract at high concentrations was hazardous to certain organs. The collective literature reviewed in this review provides insights into the use of papaya leaves as a cure for epidemic diseases, highlighting the phytochemical composition and pharmacological attributes of papaya leaves, as well as the results of various preclinical and clinical studies that have been conducted so far on the subject. The review clearly demonstrates the successful medical evidence for the use of papaya leaf extracts in the healthcare system as a supplemental herbal medication in a variety of clinical settings.Item Chemical and mechanistic modelling of green solvent extraction of metallic species with 4-acylpyrazolones(2024-12-01) Atanassova M.; Kukeva R.; Kurteva V.Solvent extraction chemistry of metals needs the use of suitable organic ligands like 4-acylpyrazolones to coordinate the studied cation, to make it soluble in an organic phase and then allow its phase transfer from the aqueous phase. The competitive solvent extraction test of almost 25 metal ions by one powerful ligand, i.e. 3-methyl-1-phenyl-4-(4-trifluoromethylbenzoyl)-pyrazol-5-one diluted in one ionic liquid ([C1Cnim+][Tf2N−]) has been conducted to get a snapshot of its efficacy. Effect of diluents on the liquid–liquid extraction of 4f-ions with a series of chelating ligands of 4-acylpyrazolones family (∼5) is presented comparing ionic liquids and typical organic diluents: 14 in number. In addition, the solvent extraction of 12 refractory metals with a series of chelating extractants is investigated in five diluents: four 4-acylpyrazolones with different radicals. The solvent extraction stoichiometry of MoO42− and Zr4+ is studied in detail using molecular and ionic diluent for comparative purposes through slope analysis method. Ethylene glycol is used to develop a non-aqueous process for Gd3+ switchable extraction, i.e. boost of two immiscible organic phases. Furthermore, EPR, NMR, IR and DTA-TG-MS spectroscopies have been used to study the extracted d- and f-species in the obtained organic extracts in ionic liquid solutions.Item Cocoa as immunomodulatory agent: an update(2023-01-01) Atanassova M.; Martorell M.; Sharopov F.; Atanassov L.; Kumar P.; Sharifi-Rad J.; Tejada-Gavela S.; Iriti M.; Pezzani R.; Varoni E.M.Cocoa is rich in polyphenols, mainly flavonoids, which correlate with several health benefits mediated by their antioxidant, anti-inflammatory and immunomodulatory properties. Cocoa and chocolate consumption have been reported to impact the regulation of the immune system, both in preclinical studies and in human trials. The mechanisms for immunomodulation can involve different effects of cocoa polyphenols on the immune system, acting as anti-inflammatory, antioxidant and anti-allergic agents, as well as the direct influence of cocoa on innate and acquired immunity, with cytokines production and activation of both lymphocyte-dependent and -independent pathways. Cocoa intake has been also correlated to changes in gut microbiota ecology and composition, also affecting the intestinal immune system. This review summarises the updates of the last two decades on cocoa as immunomodulatory agent and explores the health-related benefits of cocoa and chocolate intake.Item Comparing extraction, synergism and separation of lanthanoids using acidic and neutral compounds in chloroform and one ionic liquid: Is the latter always ``better``?(2014-01-01) Atanassova M.; Kurteva V.; Lubenov L.; Billard I.The complexation properties of a pyrazolone derivative, 3-methyl-1-phenyl-4-(4-trifluoromethylbenzoyl)-pyrazol-5-one (HL), in chloroform were examined and it was found that it possesses improved complexation ability in comparison with 4-benzoyl, 4-(4-methylbenzoyl) and 4-(4-fluorobenzoyl) derivatives. Mixed ligand chelate extractions of trivalent lanthanoids (La, Nd, Eu, Ho and Lu) with HL and 5,11,17,23-tetra-tert-butyl-25,26,27- tris(dimethylphosphinoylpropoxy)-28-hydroxy-calix[4]arene (S1) or 5,11,17,23-tetra-tert-butyl-25,27-bis(dimethylphosphinoylpropoxy)-26, 28-dihydroxy-calix[4]arene (S2) as synergistic agents were also carried out in chloride medium at constant ionic strength μ = 0.1 and CHCl3 as organic phase. The interactions between the extractants in deuterochloroform were studied by 1H, 13C, and 31P NMR. The composition of the extracted species was established as LnL3· HL (L- represents HL anion) with HL as a single extractant, and as LnL3·S in the presence of the phosphorus-containing calix[4]arene. On the basis of the experimental data, the values of the equilibrium constants were calculated. The influence of the number of PO groups of tert-butyl-calix[4]arene on the extraction process was discussed. The synergistic enhancement and separation factors between metals were evaluated. Finally, the extraction of La(iii) and Eu(iii) ions was performed by using an ionic liquid, 1-butyl-3-methylimidazolium-bis(trifluoromethanesulfonyl)imide, as a solvent and varying the type of ligands. By comparison to CHCl3, the ionic liquid offers increased distribution ratios, at the expense of a levelling off of the separation factors. Reasons for such a phenomenon are discussed. © the Partner Organisations 2014.Item Conifers phytochemicals: A valuable forest with therapeutic potential(2021-01-01) Bhardwaj K.; Silva A.S.; Atanassova M.; Sharma R.; Nepovimova E.; Musilek K.; Sharma R.; Alghuthaymi M.A.; Dhanjal D.S.; Nicoletti M.; Sharma B.; Upadhyay N.K.; Cruz-Martins N.; Bhardwaj P.; Kuča K.Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.Item Conifers phytochemicals: A valuable forest with therapeutic potential(2021-01-01) Bhardwaj K.; Silva A.S.; Atanassova M.; Sharma R.; Nepovimova E.; Musilek K.; Sharma R.; Alghuthaymi M.A.; Dhanjal D.S.; Nicoletti M.; Sharma B.; Upadhyay N.K.; Cruz-Martins N.; Bhardwaj P.; Kuča K.Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.
- «
- 1 (current)
- 2
- 3
- »