Browsing by Author "Dimov S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 2-Alkyl-Substituted-4-Amino-Thieno[2,3-d]Pyrimidines: Anti-Proliferative Properties to In Vitro Breast Cancer Models(2023-09-01) Iliev I.; Mavrova A.; Yancheva D.; Dimov S.; Staneva G.; Nesheva A.; Tsoneva I.; Nikolova B.Thienopyrimidines are structural analogs of quinazolines, and the creation of new 2-alkyl derivatives of ethyl 4-aminothienopyrimidine-6-carboxylates for the study of their anti-proliferative properties is of great pharmacological interest. Some 2-alkyl-4-amino-thieno[2,3-d]pyrimidines 2–5 were synthesized, and their cyto- and phototoxicity against BALB 3T3 cells were established by an in vitro 3T3 NRU test. The obtained results indicate that the tested compounds are not cytotoxic or phototoxic, and that they are appropriate to be studied for their anti-proliferative and anti-tumor properties. The anti-proliferative potential of the compounds was investigated on MCF-7 and MDA-MB-231 cancer cells, as well as a MCF-10A cell line (normal human mammary epithelial cells). The most toxic to MCF-7 was thienopyrimidine 3 with IC50 13.42 μg/mL (IC50 0.045 μM), followed by compound 4 (IC50 28.89 μg/mL or IC50 0.11 μM). The thienopyrimidine 4 revealed higher selectivity to MCF-7 and lower activity (IC50 367 μg/mL i.e., 1.4 μM) than compound 3 with MCF-10A cells. With respect to MDA-MB-231 cells, ester 2 manifested the highest effect with IC50 52.56 μg/mL (IC50 0.16 μM), and 2-ethyl derivative 4 revealed IC50 62.86 μg/mL (IC50 0.24 μM). It was estimated that the effect of the substances on the cell cycle progression was due to cell cycle arrest in the G2 stage for MDA-MB-231, while arrest in G1 was detected for the estrogen (ER)-positive MCF-7 cell line. The tested compound’s effects on the change of the zeta potential in the tumorigenic cells utilized in this study were determined. The calculation which we performed of the physicochemical properties and pharmacokinetic parameters influencing the biological activity suggested high intestinal absorption, as well as drug-likeness.Item Design, Cytotoxicity and Antiproliferative Activity of 4-Amino-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylates against MFC-7 and MDA-MB-231 Breast Cancer Cell Lines(2022-05-01) Mavrova A.; Dimov S.; Sulikovska I.; Yancheva D.; Iliev I.; Tsoneva I.; Staneva G.; Nikolova B.Novel 4-amino-thieno[2,3-d]pyrimidine-6-carboxylates substituted at the second position were prepared by cyclocondensation of 2-amino-3-cyano-thiophene and aryl nitriles in an acidic medium. The design of the target compounds was based on structural optimization. The derivatives thus obtained were tested in vitro against human and mouse cell lines. The examination of the compound effects on BLAB 3T3 and MFC-10A cells showed that they are safe, making them suitable for subsequent experiments to establish their antitumor activity. The photoirritancy factor of the compounds was calculated. Using the MTT test, the antiproliferative activity to MCF-10A, MCF-7 and MDA-MB-231 cell lines was estimated. The best antiproliferative effect in respect to the MCF-7 cell line revealed compound 2 with IC50 4.3 ± 0.11 µg/mL (0.013 µM). The highest selective index with respect to MCF-7 cells was shown by compound 3 (SI = 19.3), and to MDA-MB-231 cells by compound 2 (SI = 3.7). Based on energy analysis, the most stable conformers were selected and optimized by means of density functional theory (DFT). Ligand efficiency, ligand lipophilicity efficiency and the physicochemical parameters of the target 4-amino-thienopyrimidines were determined. The data obtained indicated that the lead compound among the tested substances is compound 2.Item New C2-and N3-Modified Thieno[2,3-d]Pyrimidine Conjugates with Cytotoxicity in the Nanomolar Range(2022-04-01) Mavrova A.T.; Dimov S.; Yancheva D.; Rangelov M.; Wesselinova D.; Naydenova E.Aims: The aim of the current study was to develop and explore a series of new cytotoxic agents based on the conjugation between the thieno[2,3-d]pyrimidine moiety and a second pharmacophore at the C2 or N3 position. Background: As the thieno[2,3-d]pyrimidine core is a bioisostere of the 4-anilinoquinazoline, various new thienopyrimidine derivatives were synthesized by modifying the structure of the clinically used anticancer quinazoline EGFR inhibitors of the first generation – gefitinib, and second-generation – dacomitinib and canertinib. It was reported that some thieno[2,3-d]pyrimidine derivatives showed improved EGFR inhibitory activity. On the other hand, the benzimidazole heterocycle is present as a pharmacophore unit in the structure of many clinically used chemotherapeutic agents. Some 2-aminobenzimidazole derivatives, possessing anticancer activity, demonstrated EGFR inhibition and the benzimidazole derivative EGF816 is currently in the second phase of clinical trials. Objective: The objectives of the study were the design of a novel series thieno[2,3-d]pyrimidines, synthesis of the compounds and investigation of their effects towards human cancer HT-29, MDA-MB-231, HeLa, HepG2 and to normal human Lep3 cell lines. (American Type Culture Collection, ATCC, Rockville, MD, USA). Methods: The synthetic protocol implemented cyclocondensation of 2-amino-thiophenes and nitriles in an inert medium, azaMichael addition to benzimidazole derivatives and nucleophylic substitution at the N3 place. MTS test was used in order to establish the cytotoxicity of the tested compounds. SAR analysis and in silico assessment of the inhibitory potential towards human oncogenicV599EB-Raf were performed using Molinspiration tool and Molecular Operating environment software. Results: The MTS test data showed that almost all studied thieno[2,3-d]pyirimidines (9-13, 21-22 and 25) manifest high inhibitory effect on cell proliferation at nanomolar concentrations, whereas compounds 9 (IC50 = 130 nM) and 10 (IC50 = 261 nM) containing amino acid moiety, and 21 (IC50 = 108 nM) possessing two thienopyrimidine moieties attached to a 1,3-disubstituted benzimidazole linker, revealed many times lower toxicity against Lep3 cells compared to the cancer cells. Thienopyrimidines 11-13 possessed high selectivity against HeLa cells. Compound 13 showed high inhibitory activity against MDA-MB-231 and HepG2, with IC50 1.44 nM and 1.11 nM respectively. To outline the possible biological target of the studied coumpounds, their potential to interact with human oncogenicV599EB-Raf was explored by a docking study. As a result, it was suggested that the benzimidazolyl and glycyl fragments could enhance the binding ability of the new compounds by increasing the number of hydrogen bond acceptors and by stabilizing the inactive form of the enzyme. Conclusion: The thienopyrimidines tested in vitro for human cancer HT-29, MDA-MB-231, HeLa, HepG2 and normal human Lep3 cell lines demonstrated cytotoxicity in the nanomolar range. It was established that compounds 9, 10 and 21 showed many times lower toxicity against normal Lep3 cells that can provide a high selectivity towards all four cancer cell lines at small concentrations. Based on the analysis of the structure-activity relationship, the observed trends in the cytotoxicity could be related to the lipophilicity and the topological polar surface area of the tested compounds. The docking study on the potential of the new thieno[2,3-d]pyrimidine-4-ones to interact with mutantV599EB-Raf showed that the compounds might be able to stabilize the enzyme in its inactive form.