Browsing by Author "Girginov A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item An electrochemical and surface analytical study of the formation of nanoporous oxides on niobium(2007-10-10) Tzvetkov B.; Bojinov M.; Girginov A.; Pébère N.In the present paper, the anodization of Nb in mixed sulphate + fluoride electrolytes resulting in the formation of a nanoporous oxide film has been studied. Chronoamperometry and electrochemical impedance spectroscopy have been employed to characterise in situ the kinetics of the oxidation process. In addition, the evolution of the layer structure and morphology has been followed by ex situ scanning electron microscopy. Particularly, local electrochemical impedance spectroscopy has been used to discern between the mesoscopic 2D and 3D distributions of time constants at the electrode surface. The similarity between local and global impedance spectra during anodic oxidation of Nb demonstrates the presence of an inherent 3D distribution of the high-frequency time constant, which is interpreted as in-depth variation of the steady state conductivity of the passive film. The experimental and calculational results are discussed in relation to the micro- and nanoscopic structure of the formed oxide. © 2007 Elsevier Ltd. All rights reserved.Item Formation of complex anodic films on porous alumina matrices(2003-01-01) Zahariev A.; Girginov A.The kinetics of growth of complex anodic alumina films was investigated. These films were formed by filling porous oxide films (matrices) having deep pores. The porous films (matrices) were obtained voltastatically in (COOH)2 aqueous solution under various voltages. The filling was done by re-anodization in an electrolyte solution not dissolving the film. Data about the kinetics of re-anodization depending on the porosity of the matrices were obtained. On the other hand, the slopes of the kinetic curves during re-anodization were calculated by two equations expressing the dependence of these slopes on the ionic current density. A discrepancy was ascertained between the values of the calculated slopes and those experimentally found. For this discrepancy a possible explanation is proposed, related to the temperature increase in the film, because of that the real current density significantly increases during re-anodization.