Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Golev A."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Monotone-iterative method for solving antiperiodic nonlinear boundary value problems for generalized delay difference equations with maxima
    (2013-09-23) Golev A.; Hristova S.; Nenov S.
    A nonlinear generalized difference equation with both delays and the maximum value of the unknown function over a discrete past time interval are studied. A nonlinear boundary value problem of antiperiodic type for the given difference equation is set up. One of the main characteristics of the considered difference equation is the presence of the unknown function in both sides of the equation. It leads to impossibility for using the step method for explicit solving of the nonlinear difference equation. In this paper, an approximate method, namely, the monotone iterative technique, is applied to solve the problem. An important feature of the given algorithm is that each successive approximation of the unknown solution is equal to the unique solution of an appropriately constructed initial value problem for a linear difference equation with ``maxima,`` and an algorithm for its explicit solving is given. Also, each approximation is a lower/upper solution of the given nonlinear boundary value problem. The suggested scheme for approximate solving is computer realized, and it is applied to a particular example, which is a generalization of a model in population dynamics. © 2013 Angel Golev et al.

UCTM copyright © 2002-2025

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback