Browsing by Author "Grabchev I."
Now showing 1 - 20 of 25
Results Per Page
Sort Options
Item A new bioactive complex between zn(II) and a fluorescent symmetrical benzanthrone tripod for an antibacterial textile(2019-11-01) Staneva D.; Vasileva-Tonkova E.; Grabchev I.A new fluorescent Zn(II) complex of symmetrical tripod form based on a 3-substituted benzanthrone (BT) has been synthesized and characterised. The basic photophysical properties of the new metal complex have been determined. It has been found by fluorescence spectroscopy that, one zinc ion forms a complex with the tripod ligand. The surface morphology of the ligand and its Zn(II) complex has been investigated by the scanning electron microscopy (SEM) technique. X-ray photoelectron spectroscopy (XPS) has been used for the characterisation of the chemical composition of the complex surfaces. The antibacterial activity of the Zn(II) complex has been investigated in solution and upon its deposition onto a cotton fabric. A reduction of biofilm formation on the surface of the cotton fabric has been observed compared to the non-treated cotton material. The results obtained demonstrate that the studied Zn(II) complex possesses good antimicrobial activity being most effective against the used Gram-positive bacteria.Item A new cu(Ii) complex of pamam dendrimer modified with 1,8-naphthalimide: Antibacterial and anticancer activity(2022-08-15) Manov H.; Staneva D.; Vasileva-Tonkova E.; Kukeva R.; Stoyanov S.; Grabchev I.; Alexandrova R.; Stoyanova R.A new fluorescent PAMAM copper complex ([Cu2 (D)(NO3 )4 ]) has been synthesized and identified. The formation of the complex has been investigated by fluorescence spectroscopy which revealed two copper ions to be bound to the dendrimer ligand. That has also been confirmed upon subjecting the solid copper complex to electron paramagnetic spectroscopy. The antimicrobial activity of the copper complex against Gram-negative bacterium Pseudomonas aeruginosa in light and the dark has been studied. The results demonstrate an increase in its activity when irradiated with daylight. This activity of the copper complex is retained even after being loaded onto a cotton cloth. The antitumor activity of the copper complex and dendrimer ligand against triple-negative breast cancer MDA-MB-231 cells has been investigated as well.Item Antimicrobial Properties of Chitosan-Modified Cotton Fabric Treated with Aldehydes and Zinc Oxide Particles(2023-07-01) Staneva D.; Atanasova D.; Angelova D.; Grozdanov P.; Nikolova I.; Grabchev I.Chitosan is a natural biopolymer with a proven ability to impart textile materials with antimicrobial properties when loaded onto them. The mechanism of its bacteriological activity depends on the contact between the positive and negative charges of the amino groups located on the surface of the microbes. Unfortunately, the type of microorganisms and pH influence this action–shortcomings that can be avoided by chitosan modification and by loading its film with substances possessing antimicrobial properties. In this study, chitosan was modified with benzaldehyde and crosslinked with glutaraldehyde to form a film on the surface of cotton fabric (CB). Also, another material was obtained by including zinc oxide particles (CBZ) synthesized in situ into the chitosan coating. The performed analyses (contact angle measurement, optical and scanning electron microscopy, FTIR, XRD, and thermal analysis) evidenced the modification of the cotton fabric and the alteration of the film properties after zinc oxide inclusion. A comparison of the antimicrobial properties of the new CB with materials prepared with chitosan without benzaldehyde from our previous study verified the influence of the hydrophobicity and surface roughness of the fabric surface on the enhancement of antimicrobial activity. The microbial growth inhibition increased in the following order: fungal strain Candida lipolytica >Gram-positive bacteria Bacillus cereus >Gram-negative bacteria Pseudomonas aeruginosa. The samples containing zinc oxide particles completely inhibited the growth of all three model strains. The virucidal activity of the CB was higher against human adenovirus serotype 5 (HAdV-5) than against human respiratory syncytial virus (HRSV-S2) after 60 min of exposure. The CBZ displayed higher virucidal activity with a Δlog of 0.9 against both viruses.Item Copolymerization of acrylonitrile with some monomeric 1,8-naphthalimide fluorescent brighteners(2000-01-01) Grabchev I.; Philipova T.The radical polymerization of acrylonitrile in the presence of two unsaturated fluorescent brighteners (4-methoxy-1,8-naphthalimide derivatives) in N, N-dimethyl formamide solution has been investigated. The effect of the brightners on the polymerization rate was established. It was found that the monomeric fluorescent brighteners took part in the polymerization. Their content in the polymer chain was 0.88-0.92%. No change in the chemical structure of the naphthalimide derivatives occurred during the polymerization. The introduction of fluorescent brighteners into the polymer chain results in polyacrylonitrile possessing fluorescent properties. The absorption and fluorescent properties of the monomeric fluorescent brighteners and copolymers in N, N-dimethyl formamide (DMF) solution are discussed.Item Cotton fabric modified with a pamam dendrimer with encapsulated copper nanoparticles: Antimicrobial activity(2021-12-01) Staneva D.; Atanasova D.; Nenova A.; Vasileva-Tonkova E.; Grabchev I.A new methodology for modifying textile materials with dendrimers containing nanoparticles was developed. This involved a combination of eosin Y and N-methyldiethanolamine (MDEA) for reducing the copper ions in the dendrimer complex by enabling a photochemical reaction under visible light and ambient conditions. The conversion of copper ions into nanoparticles was monitored using scanning electron microscopy (SEM) and by performing colorimetric, fluorescence, and electron paramagnetic resonance (EPR) studies. Regardless of the concentration of the photoinitiator eosin Y, it discolored completely upon illumination. Three types of cotton fabrics were compared as antimicrobial materials against Bacillus cereus. One of the fabrics was dyed with a first-generation PAMAM dendrimer which had been functionalized with eight 1,8-naphthalimide fluorophores. Another fabric was dyed with a dendrimer–copper complex, and the third was treated by conversion of the complex into copper nanoparticles encapsulated into the dendrimer. An enhancement in the antimicrobial activity of the textiles was achieved at higher dendrimer concentrations, under illumination with visible light. The fabric modified with the copper nanoparticles encapsulated inside the dendrimer exhibited the best antibacterial activity because it had two photosensitizers (PS), as both 1,8-naphthalimide fluorophores and copper nanoparticles were contained in the dendrimer molecules. The presence of oxygen and suitable illumination activated the photosensitizers to generate the reactive oxygen species (singlet oxygen (1O2) and other oxygenated products, e.g., anion radicals, hydroxyl radicals, and hydrogen peroxide) responsible for destroying the bacteria.Item Design of a Composite Based on Polyamide Fabric-Hydrogel-Zinc Oxide Particles to Act as Adsorbent and Photocatalyst(2022-10-01) Atanasova D.; Irikova M.; Staneva D.; Grabchev I.Surface-initiated photopolymerization has been run to synthesize a hydrogel with ZnO particles distributed uniformly along its structure, which has been loaded onto a polyamide fabric. Three samples have been obtained at different concentrations of zinc nitrate (10% (sample PA10); 20% (sample PA20) and 30% (sample PA30) of the weight of the fabric, respectively)) and subjected to gravimetric analysis, scanning electron microscopy and transmission electron microscopy. The effect of the adsorption parameters of the composite material on the removal Drimaren Rot K-7B dye from water has been studied. The Freundlich isotherm describes this process better than the Langmuir isotherm. As the results of the adsorption kinetics show, the process fits well with a pseudo-second-order equation and depends both on the boundary layer and on the structure of the adsorbent itself. The thermodynamic parameters have demonstrated that the process is endothermic and physical. When exposed to ultraviolet light, the discoloration of the dye solution accelerates due to the photocatalytic properties of the composite materials. The addition of H2O2 also speeds up further the process, while the reuse of the materials slows it down, gradually changing the kinetic parameters. The reaction has been attributed to first-order kinetic model, when the active centers of the materials and the number of oxidative radicals formed are numerous and to the second-order kinetic model at a lower reaction activity. Moreover, 52% decolorization of the dye solution (50 mg L−1) in the dark was achieved from composite material PA 30 (13.3 g L−1) in 120 min and 89% under UV light irradiation. The H2O2 addition (0.14 mmol L−1) enhanced it up to 98%. In the second and third use of the photocatalyst, the dye removal decreased to 80% and 60%. Composite material PA30 exhibits antibacterial activity against Gram-negative bacteria E. coli, being most effective at eliminating Gram-positive bacteria S. aureus.Item Enhanced Photodynamic Efficacy Using 1,8-Naphthalimides: Potential Application in Antibacterial Photodynamic Therapy(2022-09-01) Staneva D.; Said A.I.; Vasileva-Tonkova E.; Grabchev I.This study addresses the need for antibacterial medication that can overcome the current problems of antibiotics. It does so by suggesting two 1,8-naphthalimides (NI1 and NI2) containing a pyridinium nucleus become attached to the imide-nitrogen atom via a methylene spacer. Those fluorescent derivatives are covalently bonded to the surface of a chloroacetyl-chloride-modified cotton fabric. The iodometric method was used to study the generation of singlet oxygen (1O2) by irradiation of KI in the presence of monomeric 1,8-naphthalimides and the dyed textile material. Both compounds generated reactive singlet oxygen, and their activity was preserved even after they were deposited onto the cotton fabric. The antibacterial activity of NI1 and NI2 in solution and after their covalent bonding to the cotton fabric was investigated. In vitro tests were performed against the model gram-positive bacteria B. cereus and gram-negative P. aeruginosa bacteria in dark and under light iradiation. Compound NI2 showed higher antibacterial activity than compound NI1. The light irradiation enhanced the antimicrobial activity of the compounds, with a better effect achieved against B. cereus.Item Fluorescent Composite Cotton Fabric Modified with Crosslinked Chitosan for Theranostic Applications(2023-12-01) Staneva D.; Atanasova D.; Grabchev I.Developing multifunctional textile material for wound dressing is challenging due to the variety of wounds and their differing healing stages. Therefore, theranostics replaces the traditional approach to provide patient comfort and accelerated healing. In this study, we developed and compared three different materials. For this purpose, for the first time, chitosan was modified with 4-nitro-1,8-naphthalic anhydride in N,N-dimethylformamide (DMF) suspension, and subsequent nucleophilic substitution of the nitro group with N,N-dimethylamino group, whereby chitosan with a yellow color and fluorescence was obtained. Cotton fabric was impregnated successively with a citric acid solution and solution from chitosan and chitosan modified with 1,8-naphthalimide fluorophore (CN material). The same experimental protocol was applied for the second material, but indomethacin was added to the chitosan solution (CNI material). The third material was prepared similarly to the second but was immersed in an alginate solution as a last step (CNIA material). The obtained materials have been characterized by optical and scanning electron microscopy and thermal analysis (TG-DTA-DTG). Indomethacin release from composite materials and hydrogel swelling and erosion in phosphate buffer pH 7.4 at 37 °C was examined using gravimetric analysis, UV-vis absorption, and fluorescence spectroscopy. The antimicrobial activity of the cotton samples has been evaluated against B. cereus and P. aeruginosa as model bacterial strains. The analysis showed that CN material inhibited about 98.8% of the growth of P. aeruginosa and about 95.5% of the growth of B. cereus. Other composite materials combine antimicrobial properties with a sustained release of biologically active substances that can observed visually.Item Hyperbranched polymers modified with Dansyl units and their Cu(II) complexes. bioactivity studies(2020-10-02) Bosch P.; Staneva D.; Vasileva-Tonkova E.; Grozdanov P.; Nikolova I.; Kukeva R.; Stoyanova R.; Grabchev I.Two new copper complexes of hyperbranched polymers modified with dansyl units were synthesized and characterized by infrared spectroscopy (IR) and electron paramagnetic resonance (EPR) techniques. It was found that copper ions coordinate predominantly with nitrogen or oxygen atoms of the polymer molecule. The place of the formation of complexes and the number of copper ions involved depend on the chemical structure of the polymer. The antimicrobial activity of the new polymers and their Cu(II) complexes was tested against Gram-negative and Gram-positive bacterial and fungal strains. Copper complexes were found to have activity better than that of the corresponding ligands. The deposition of the modified branched polymers onto cotton fabrics prevents the formation of bacterial biofilms, which indicates that the studied polymers can find application in antibacterial textiles.Item Metal–Peptide Complexes with Antimicrobial Potential for Cotton Fiber Protection(2023-02-01) Georgieva S.; Todorov P.; Staneva D.; Grozdanov P.; Nikolova I.; Grabchev I.A study of the formation of copper (II) complexes with hemorphin peptide motifs in alkalic water solutions is presented. The effect of the peptide ligand on the complexing properties of the Cu (II) ion was quantified by giving the stoichiometry and stability of the complex compounds in the medium in which they are formed using voltammetric (cyclic) and spectral (UV-Vis and fluorimetric) analytical techniques. The resulting complexes were examined via IR spectroscopy to detect M-N and M-O oscillations and using the EPR approach in solution and in the solid phase to view the coordination and ligand binding regime. The possibility of the synergistic action of copper ions in the antivirus protection processes of cotton fibers coated in the same solvent with the newly obtained complex compounds was also investigated. One of the advantages is the formation of the complexes in an environment where the immobilization takes place, which contributes to increasing the efficiency of the process. The obtained results may serve as an aid for future more detailed biological studies of structure–activity relationships (SARs).Item New Poly(Propylene Imine) dendrimer modified with acridine and its Cu(II) complex: Synthesis, characterization and antimicrobial activity(2019-09-01) Bosch P.; Staneva D.; Vasileva-Tonkova E.; Grozdanov P.; Nikolova I.; Kukeva R.; Stoyanova R.; Grabchev I.A second-generation poly(propylene imine) dendrimer modified with acridine and its Cu(II) complex have been synthesized for the first time. It has been found that two copper ions form complexes with the nitrogen atoms of the dendrimeric core by coordinate bonds. The new compounds have been characterized by nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), fourier-transform infrared spectroscopy (FTIR) and fluorescence spectroscopy. The spectral characteristics of the modified dendrimer have been measured in different organic solvents, and a negative fluorescence solvatochromism has been observed. The antimicrobial activity of the dendrimers has been tested against model pathogenic microorganisms in agar and by broth dilution method. The cotton fabric treated with both dendrimers has been evaluated towards pathogenic microorganisms. The obtained modified cotton fabrics have been shown to hamper bacterial growth and to prevent biofilm formation. Dendrimer cytotoxicity has been investigated in vitro in the model HEp-2 cell line.Item New Water-Soluble Poly(propylene imine) Dendrimer Modified with 4-Sulfo-1,8-naphthalimide Units: Sensing Properties and Logic Gates Mimicking(2023-06-01) Said A.I.; Staneva D.; Grabchev I.A new water-soluble poly(propylene imine) dendrimer (PPI) modified with 4-sulfo-1,8-naphthalimid units (SNID) and its related structure monomer analog (SNIM) has been prepared by a simple synthesis. The aqueous solution of the monomer exhibited aggregation-induced emission (AIE) at 395 nm, while the dendrimer emitted at 470 nm due to an excimer formation beside the AIE at 395 nm. Fluorescence emission of the aqueous solution of either SNIM or SNID was significantly affected by traces of different miscible organic solvents, and the limits of detection were found to be less than 0.05% (v/v). Moreover, SNID exhibited the function to execute molecular size-based logic gates where it mimics XNOR and INHIBIT logic gates using water and ethanol as inputs and the AIE/excimer emissions as outputs. Hence, the concomitant execution of both XNOR and INHIBIT enables SNID to mimic digital comparators.Item Photoisomerization of triazine-stilbene fluorescent brighteners in solution and in their copolymers with styrene(2000-01-01) Grabchev I.; Bojinov V.The paper reports on the photochemical trans-cis isomerization of some new polymerizable triazinestilbene fluorescent brighteners and their copolymers with styrene in aqueous and ethanol solutions. A dependence of trans-cis isomers in solution equilibrium and in solid polymeric films on the nature of the substituent in the triazine ring has been found.Item Photophysical and antibacterial activity of light-activated quaternary eosin Y(2019-01-01) Staneva D.; Yordanova S.; Vasileva-Tonkova E.; Stoyanov S.; Grabchev I.The functional characteristics of a new eosin dye with biocidal quaternary ammonium group (E) were studied in aqueous solution and in organic solvents of different polarity. The spectral properties depend on the nature and polarity of the respective solvents. The antimicrobial activity of compound E has been tested in vitro against Gram-negative bacteria (Escherichia coli, Acinetobacter johnsoni and Pseudomonas aeruginosa), Gram-positive bacteria (Sarcina lutea and Bacillus cereus) and the antifungal activity was tested against the yeasts Candida lipolytica in solution and after treated on cotton fabric. Broth dilution test has been used for quantitative evaluation of the antimicrobial activity of compound E against the model strains. The ability of compound E to inhibit the growth of model Gram-negative P. aeruginosa strain was assessed after 16 h of incubation in presence and absence of light. These experiments were conducted in planktonic format in solution and on cotton fabric. The results suggest that the new compound is effective in treating the relevant pathogens with better results being obtained by irradiation with light. In this case the quaternary ammonium group promotes the binding of eosin Y moiety to the bacterial cell wall thus accelerating bacterial photo inactivation.Item Photophysical Properties of new Polymerizable 1,8-Naphthalimides and their Copolymers with Methylmethacrylate(2003-01-01) Grabchev I.; Staneva D.In this paper we discuss the photophysical properties of some 4-nitro- and 4-allylamino-N-phenyl-1,8-naphthalimides having different substituents in the phenyl ring, and their copolymers with methylmethacrylate in solid films. The influence of the substituents at the phenyl ring and the environment (methanol or polymer matrix) on the absorption and fluorescence properties is also discussed.Item Pollutants sorbent made of cotton fabric modified with chitosan-glutaraldehyde and zinc oxide particles(2021-06-02) Toteva V.; Staneva D.; Grabchev I.The paper reports on the preparation of composite materials by modifying cotton fabric with a layer of crosslinked glutaraldehyde chitosan containing zinc oxide particles. The ability of chitosan to form complexes with zinc ions has been used to control the size, structure, and distribution of the particles on the fiber surface. The three different obtained materials have been characterized by optical and scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), and fluorescent analysis. It has been found that the interaction of the ZnO particles with the functional groups of chitosan affects its swelling ability in water and thus determines its sorption prop-erties. The capacity of the materials to wipe water-soluble (textile reactive dye) and water-insoluble (crude oil and oil products) contaminants has been compared. The effect that the amount of zinc oxide has on the ability of the materials to remove contaminants has also been studied. The possi-bility for adsorption–desorption of the crude oil and reuse of the sorbent material has been investi-gated as well.Item Self-Associated 1,8-Naphthalimide as a Selective Fluorescent Chemosensor for Detection of High pH in Aqueous Solutions and Their Hg2+ Contamination(2023-01-01) Said A.I.; Staneva D.; Angelova S.; Grabchev I.A novel diamino triazine based 1,8-naphthalimide (NI-DAT) has been designed and synthesized. Its photophysical properties have been investigated in different solvents and its sensory capability evaluated. The fluorescence emission of NI-DAT is significantly impacted by the solvent polarity due to its inherent intramolecular charge transfer character. Moreover, the fluorescence emission quenched at higher pH as a result of photo-induced electron transfer (PET) from triazine moiety to 1,8-naphthalimide after cleaving hydrogen bonds in the self-associated dimers. Furthermore, the new chemosensor exhibited a good selectivity and sensitivity towards Hg2+ among all the used various cations and anions in the aqueous solution of ethanol (5:1, v/v, pH = 7.2, Tampon buffer). NI-DAT emission at 540 nm was quenched remarkably only by Hg2+, even in the presence of other cations or anions as interfering analytes. Job’s plot revealed a 2:1 stoichiometric ratio for NI-DAT/Hg2+ complex, respectively.Item Spectral characteristics and sensor ability of a new 1,8-naphthalimide and its copolymer with styrene(2020-06-01) Staneva D.; Angelova S.; Grabchev I.In this study, a novel 6-(allylamino)-2-(2-(dimethylamino)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NI3) was synthesized and characterized. Its copolymer with styrene was also obtained. The photophysical characteristics of NI3 were investigated in organic solvents and the results were compared with those of its structural analogue, 2-allyl-6-((2-(dimethylamino)ethyl) amino)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NI4). The influences of the pH in the medium and different metal ions on the fluorescent intensity of monomers and polymers were also investigated. Computational tools (DFT and TDDFT calculations) were employed when studying the structure and properties of the 1,8-naphthalimide-based chromophores. Although the position of the N,N-dimethylaminoethylamine receptor fragment did not significantly impact proton detection, it was still important for detecting metal ion sensor ability, especially for monomeric 1,8-naphthalimide structures and their copolymers with styrene.Item Study of Novel Peptides for Antimicrobial Protection in Solution and on Cotton Fabric(2022-08-01) Todorov P.; Georgieva S.; Staneva D.; Peneva P.; Grozdanov P.; Nikolova I.; Vasileva-Tonkova E.; Grabchev I.Some new N- and C-modified biomolecular peptide analogues of both VV-hemorphin-5 and VV-hemorphin-7 with varied amino acids (Cys, Glu, His), 1-adamantanecarboxylic acid, and niacin (nicotinic acid) were synthesized by solid-phase peptide synthesis—Fmoc (9-fluorenylmethoxy-carbonyl) chemistry and were characterized in water solutions with different pH using spectroscopic and electrochemical techniques. Basic physicochemical properties related to the elucidation of the peptide structure at physiological pH have been also studied. The results showed that the interaction of peptide compounds with light and electricity preserves the structural and conformational integrity of the compounds in the solutions. Moreover, textile cotton fibers were modified with the new compounds and the binding of the peptides to the surface of the material was proved by FTIR and SEM analysis. Washing the material with an alkaline soap solution did not show a violation of the modified structure of the cotton. Antiviral activity against the human respiratory syncytial virus (HRSV-S2) and human adenovirus serotype 5 (HAdV-5), the antimicrobial activity against B. cereus and P. aeruginosa used as model bacterial strains and cytotoxic effect of the peptide derivatives and modified cotton textile material has been evaluated. Antimicrobial tests showed promising activity of the newly synthesized compounds against the used Gram-positive and Gram-negative bacteria. The compounds C-V, H-V, AC-V, and AH-V were found slightly more active than NH7C and NCH7. The activity has been retained after the deposition of the compounds on cotton fibers.Item Surface functionalization of cotton fabric with fluorescent dendrimers, spectral characterization, cytotoxicity, antimicrobial and antitumor activity(2019-06-01) Grabchev I.; Staneva D.; Vasileva-Tonkova E.; Alexandrova R.Poly(propylenimine) dendrimers from first and third generations modified with 1,8-naphthalimide units and their Zn(II) complexes have been investigated by absorption and fluorescence spectroscopy. These dendrimers have been deposited on a cotton cloth by the extraction method, producing yellow-colored textile materials. They have been characterized by defining their color coordinates L*a*b*, XYZ and xy. The antimicrobial activity of dendrimers has been investigated in vitro against model gram-positive and gram-negative bacteria and yeasts. Being deposited onto the surface of cotton fabric, the studied dendrimers reduced bacterial growth and prevented the formation of bacterial biofilm. Anticancer and cytotoxicity activities have also been performed against HeLa and Lep-3 human tumor cell lines as model systems.