Browsing by Author "Kabaivanova L."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Examination of Humicola lutea immobilized in sol-gel matrices: Effective source of α-galactosidase(2008-01-01) Spasova D.; Aleksieva P.; Nacheva L.; Kabaivanova L.; Chernev G.; Samuneva B.α-Galactosidase production by the fungus Humicola lutea 120-5 immobilized in a hybrid sol-gel matrix, consisting of tetraethylorthosilicate (TEOS) as a precursor and a mixture of polyethyleneglycol (PEG) and polyvinylalcohol (PVA), was investigated under semicontinuous shake flask cultivation and compared to the enzyme secretion by free cells. The influence of the carrier weight on the α-galactosidase biosynthesis in repeated batch experiments was followed. Best results were obtained with 2 g of the sol-gel particles per culture flask using 144-h runs. The growth behaviour of the immobilized mycelium during both the growth and productive phases was observed by scanning electron microscopy. The presence of abundant mycelial growth of intact hyphae correlated with a 2-fold higher enzyme activity compared to free cells. The obtained biocatalyst retained a high level of enzyme titer exceeding the activity of free cells during four cycles of operation (24 days). This result is confirmed by the micrographs showing the retained viability of the growing vegetative cells due to the protective role of the carrier. © 2008 Verlag der Zeitschrift für Naturforschung.Item New approach for n-hexadecane biodegradation by sol-gel entrapped bacterial cells(2018-06-01) Chernev G.; Christova N.; Kabaivanova L.; Nacheva L.In this study sol-gel hybrid materials in the system SiO2-chitosan (CS) - polyethylene glycol (PEG), as novel structures with potential application in bioremediation were investigated. The organic components - CS and PEG were used as structural modifiers for functionality improvement. The catabolic activity to n-hexadecane of Pseudomonas aeruginosa BN10 free and immobilized cells was estimated. The cell immobilization technique was employed to evaluate its efficiency on biodegradation and protective effect from high levels of hydrocarbons. The characteristics of obtained hybrid materials were investigated via X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Atomic-force microscopy (AFM) analyses. The obtained results revealed that the organic part in the synthesized hybrids is important for microstructure and defined properties creation. The rate of n-hexadecane mineralization by the bacterial strain was influenced by variation in cell densities applied in the immobilization procedures. Semi-continuous processes with multiple xenobiotic supplies were carried out. The synthesized by the sol-gel method hybrid matrices proved to be suitable carriers for realizing an effective biodegradation process of n-hexadecane by Pseudomonas aeruginosa BN10. Biodegradation of 50 kg/m3 of n-hexadecane was realized by free cells. Significantly greater quantity (150 kg/m3) was mineralized for 15 active cycles by entrapped bacterial cells. Biodegradation process with gradual increase of xenobiotic concentration reaching 30 kg/m3 for 120 h was also accomplished.Item Silica hybrid biomaterials containing gelatin synthesized by sol-gel method(2010-08-01) Chernev G.; Borisova B.; Kabaivanova L.; Salvado I.This work reports the sol-gel synthesis of silica hybrids. We determined the effect of the type and quantity of silica precursors and organic compounds on the resulting structure, surface area, nanostructure design and size, and potential applications. The structure of the synthesized hybrids was analyzed using FT-IR, XRD, BET-Analysis, SEM, and AFM. We demonstrate the immovilization of whole living thermophilic bacterial cells with cyanocompound degradation activity in the synthesized silica hybrid biomaterials by entrapment, chemical binding, and adsorption. © 2010 Versita Warsaw and Springer-Verlag Wien.Item Silica-carrageenan hybrids used for cell immobilization realizing high-temperature degradation of nitrile substrates(2011-04-01) Kabaivanova L.; Chernev G.; Miranda Salvado I.; Fernandes M.In this work the application of hybrid materials, containing TEOS as source of SiO2 and k-carrageenan in different percentage, synthesized by the sol-gel method at room temperature was studied. They were used as matrices for entrapment of whole Bacillus sp. UG-5B cells, producers of thermostable nitrilase. The effect of the surface area and size and quantity of pores in the synthesized materials on the enzyme activity was evaluated. The process of biodegradation of different concentrations of toxic, potentially carcinogenic and mutagenic substrates by the obtained biocatalysts was investigated. The enzyme reaction takes place by the nitrilase pathway, catalysing nitrile hydrolysis directly to the corresponding carboxylic acid, forming ammonia. At batch experiments the influence of the substrate concentration of different nitriles was tested and 20 mM concentration was found most suitable. A two-step biodegradation process in a laboratory-scale column bioreactor of o-, m- and p-tolunitrile as a mixture was followed. After operation of the system for nine hours for the mixture of substrates at a flow rate of 45 mL h-1 and at 60°C, the overall conversion realized was above 90%, showing a good efficiency of the investigated process. © Versita Sp. z o.o.Item Sol-gel nanomaterials with algal heteropolysaccharide for immobilization of microbial cells, producing a-galactosidase and nitrilase(2009-01-01) Djambaski P.; Aleksieva P.; Emanuilova E.; Chernev G.; Spasova D.; Nacheva L.; Kabaivanova L.; Salvado I.M.M.; Samuneva B.The main purpose of the present work is the sol-gel synthesis and structure of the hybrid nanomaterials as matrices for two types of cells, producing hydrolytic enzymes. The effect of different percent of algal polysaccharide included in them on the hydrolytic activity of fungal and bacterial cells was investigated. The hybrid sol-gel nanomaterials were synthesized from tetraethylortosilicate (TEOS) as a silicon precursor and heteropolysaccharide (AHPS) from the red microalga Dixonella grisea as an organic part. The structure of these matrices was investigated using different methods: FT-IR, XRD, BET-Analysis, EDS, SEM and AFM. The sol-gel hybrids were used for the immobilization of fungal (Humicola lutea) and bacterial (Bacillus sp.) cells, producing α-galactosidase and nitrilase, respectively. It was established the effect of the quantity of the heteropolysaccharide in the matrices on the activity of these hydrolytic enzymes. Using 20% AHPS in the hybrid nanomaterials the α-galactosidase yield exceeded over two-fold the enzyme titre of the free cells in the third cycle of repeated batch shake flask cultivation. These results correlated with a dense growth of immobilized mycelium observed with scanning electron microscopy (SEM). The increase of the percentage of organic part in the sol-gel matrix up to 20% led to an increase in the nitrilase activity. The addition of 40% AHPS did not significantly affect the decrease of the nitrile biodegradation. © 2009 Taylor and Francis Group, LLC.