Browsing by Author "Kolev I."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Alternative Options for Ebullated Bed Vacuum Residue Hydrocracker Naphtha Utilization(2023-12-01) Stratiev D.; Shishkova I.; Ivanov M.; Dinkov R.; Toteva V.; Angelova D.; Kolev I.; Tavlieva M.; Yordanov D.The vacuum residue hydrocracker naphtha (VRHN) is a chemically unstable product that during storage changes its colour and forms sediments after two weeks. It cannot be directly exported from the refinery without improving its chemical stability. In this research, the hydrotreatment of H-Oil naphtha with straight run naphtha in a commercial hydrotreater, its co-processing with fluid catalytic cracking (FCC) gasoline in a commercial Prime-G+ post-treater, and its co-processing with vacuum gas oil (VGO) in a commercial FCC unit were discussed. The hydrotreatment improves the chemical stability of H-Oil naphtha and reduces its sulphur content to 3 ppm. The Prime-G+ co-hydrotreating increases the H-Oil naphtha blending research octane number (RON) by 6 points and motor octane number (MON) by 9 points. The FCC co-cracking with VGO enhances the blending RON by 11.5 points and blending MON by 17.6 points. H-Oil naphtha conversion to gaseous products (C1–C4 hydrocarbons) in the commercial FCC unit was found to be 50%. The use of ZSM 5 containing catalyst additive during processing H-Oil naphtha showed to lead to FCC gasoline blending octane enhancement by 2 points. This enabled an increment of low octane number naphtha in the commodity premium near zero sulphur automotive gasoline by 2.4 vol.% and substantial improvement of refinery margin. The processing of H-Oil naphtha in the FCC unit leads also to energy saving as a result of an equivalent lift steam substitution in the FCC riser.Item Experience in Processing Alternative Crude Oils to Replace Design Oil in the Refinery(2024-06-01) Stratiev D.; Shiskova I.; Toteva V.; Georgiev G.; Dinkov R.; Kolev I.; Petrov I.; Argirov G.; Bureva V.; Ribagin S.; Atanassov K.; Nenov S.; Sotirov S.; Nikolova R.; Veli A.A comprehensive investigation of a highly complex petroleum refinery (Nelson complexity index of 10.7) during the processing of 11 crude oils and an imported atmospheric residue replacing the design Urals crude oil was performed. Various laboratory oil tests were carried out to characterize both crude oils, and their fractions. The results of oil laboratory assays along with intercriteria and regression analyses were employed to find quantitative relations between crude oil mixture quality and refining unit performance. It was found that the acidity of petroleum cannot be judged by its total acid number, and acid crudes with lower than 0.5 mg KOH/g and low sulphur content required repeated caustic treatment enhancement and provoked increased corrosion rate and sodium contamination of the hydrocracking catalyst. Increased fouling in the H-Oil hydrocracker was observed during the transfer of design Urals crude oil to other petroleum crudes. The vacuum residues with higher sulphur, lower nitrogen contents, and a lower colloidal instability index provide a higher conversion rate and lower fouling rate in the H-Oil unit. The regression equations developed in this work allow quantitative assessment of the performance of crucial refining units like the H-Oil, fluid catalytic cracker, naphtha reformer, and gas oil hydrotreatment based on laboratory oil test results.Item Intercriteria Analysis to Diagnose the Reasons for Increased Fouling in a Commercial Ebullated Bed Vacuum Residue Hydrocracker(2022-01-01) Stratiev D.; Shishkova I.; Dinkov R.; Kolev I.; Argirov G.; Ivanov V.; Ribagin S.; Atanassova V.; Atanassov K.; Stratiev D.; Nenov S.; Pilev D.; Yordanov D.The intercriteria analysis developed on the base of intuitionistic fuzziness and index matrices was applied to evaluate processing data of the LUKOIL Neftohim Burgas H-Oil ebullated bed vacuum residue hydrocracker with the aim of revealing the reasons for increased fouling registered during the 3rd cycle of the H-Oil hydrocracker. It was found that when the ratio of the δT of the 1st reactor to the δT of the 2nd reactor gets lower than 2.0, an excessive H-Oil equipment fouling occurs. The fouling was also found to be favored by processing of lower Conradson carbon content vacuum residual oils and increased throughput and depressed by increasing the dosage of the HCAT nanodispersed catalyst. The fouling in the atmospheric tower bottom section is facilitated by a lower aromatic content in the atmospheric tower bottom product. The addition of FCC slurry oil not only increases aromatic content but also dissolves some of the asphaltenes in the atmospheric residual hydrocracked oil and decreases its colloidal instability index. The fouling in the vacuum tower bottom section is facilitated by a higher saturate content in the VTB. Surprisingly, it was found that the asphaltene content in the VTB depresses the fouling rate. No relation was found of the sediment content in the hydrocracked residual oils measured by hot filtration tests and by the centrifuge method to the equipment fouling of the H-Oil hydrocracker.Item Predicting Petroleum SARA Composition from Density, Sulfur Content, Flash Point, and Simulated Distillation Data Using Regression and Artificial Neural Network Techniques(2024-08-01) Shiskova I.; Stratiev D.; Sotirov S.; Sotirova E.; Dinkov R.; Kolev I.; Stratiev D.D.; Nenov S.; Ribagin S.; Atanassov K.; Yordanov D.; van den Berg F.The saturate, aromatic, resin, and asphaltene content in petroleum (SARA composition) provides valuable information about the chemical nature of oils, oil compatibility, colloidal stability, fouling potential, and other important aspects in petroleum chemistry and processing. For that reason, SARA composition data are important for petroleum engineering research and practice. Unfortunately, the results of SARA composition measurements reported by diverse laboratories are frequently very dissimilar and the development of a method to assign SARA composition from oil bulk properties is a question that deserves attention. Petroleum fluids with great variability of SARA composition were employed in this study to model their SARA fraction contents from their density, flash point, sulfur content, and simulated distillation characteristics. Three data mining techniques: intercriteria analysis, regression, and artificial neural networks (ANNs) were applied. It was found that the ANN models predicted with higher accuracy the contents of resins and asphaltenes, whereas the non-linear regression model predicted most accurately the saturate fraction content but with an accuracy that was lower than that reported in the literature regarding uncertainty of measurement. The aromatic content was poorly predicted by all investigated techniques, although the prediction of aromatic content was within the uncertainty of measurement. The performed study suggests that as well as the investigated properties, additional characteristics need to be explored to account for complex petroleum chemistry in order to improve the accuracy of SARA composition prognosis.Item SAR-AD Method to Characterize Eight SARA Fractions in Various Vacuum Residues and Follow Their Transformations Occurring during Hydrocracking and Pyrolysis(2023-04-01) Adams J.J.; Rovani J.F.; Planche J.P.; Loveridge J.; Literati A.; Shishkova I.; Palichev G.; Kolev I.; Atanassov K.; Nenov S.; Ribagin S.; Stratiev D.; Yordanov D.; Huo J.Model compounds were used to provide some chemical boundaries for the eight-fraction SAR-ADTM characterization method for heavy oils. It was found that the Saturates fraction consists of linear and highly cyclic alkanes; the Aro-1 fraction consists of molecules with a single aromatic ring; the Aro-2 fraction consists of mostly 2 and 3-ring fused aromatic molecules, the pericondensed 4-ring molecule pyrene, and molecules with 3–5 rings that are not fused; and the Aro-3 fraction consists of 4-membered linear and catacondensed aromatics, larger pericondensed aromatics, and large polycyclic aromatic hydrocarbons. The Resins fraction consists of mostly fused aromatic ring systems containing polar functional groups and metallated polar vanadium oxide porphyrin compounds, and the Asphaltene fraction consists of both island- and archipelago-type structures with a broad range of molecular weight variation, aromaticity, and heteroatom contents. The behavior of the eight SAR-ADTM fractions during hydrocracking and pyrolysis was investigated, and quantitative relations were established. Intercriteria analysis and evaluation of SAR-ADTM data of hydrocracked vacuum residue and sediment formation rate in commercial ebullated bed vacuum residue hydrocracking were performed. It showed that total asphaltene content, toluene-soluble asphaltenes, and colloidal instability index contribute to sediment formation, while Resins and Cyclohexane-soluble asphaltenes had no statistically meaningful relation to sediment formation for the studied range of operation conditions.