Browsing by Author "Marchetti P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Multi-scale modelling of OSN batch concentration with spiral-wound membrane modules using OSN Designer(2016-05-01) Shi B.; Peshev D.; Marchetti P.; Zhang S.; Livingston A.G.Three commercial spiral-wound membrane modules of different sizes, from 1.8″ × 12″ to 4.0″ × 40″, are used to concentrate a solution of sucrose octaacetate in ethyl acetate under different operating conditions. A mathematical model to describe the batch concentration process is developed, based on a combination of the classical solution diffusion membrane transport model and the film theory, to account for the mass transfer effects. The model was implemented using the ``OSN Designer`` software tool. The membrane transport model parameters as well as all parameters in the pressure drop and mass transfer correlations for the spiral-wound modules were obtained from regression on a limited number of experimental data at steady state conditions. Excellent agreement was found between the experimental and multi-scale modelling performance data under various operating conditions. The results illustrate that the performance of a large scale batch concentration process with spiral-wound membrane modules can be predicted based on laboratory crossflow flat sheet test data when the fluid dynamics and mass transfer characteristics in the module, and the necessary channel geometry are known. In addition, the effects of concentration polarisation, pressure drop through feed and permeate channels, and thermodynamic non-ideality of the solution at large scale batch concentration are also investigated.Item Performance of spiral-wound membrane modules in organic solvent nanofiltration - Fluid dynamics and mass transfer characteristics(2015-11-05) Shi B.; Marchetti P.; Peshev D.; Zhang S.; Livingston A.G.During the past few decades organic solvent nanofiltration has received a great deal of attention and a growing number of studies has been reported on development and optimisation of solvent resistant membranes and their transport mechanism. However, most of these studies have used flat sheet membranes. On the other hand, many researchers studied fluid dynamics and mass transfer in spiral-wound membrane modules, almost exclusively in aqueous solutions. This paper reports the performance of four spiral-wound membrane modules tested in 0-20. wt% solutions of sucrose octaacetate in ethyl acetate under various pressures and retentate flowrates. These modules were made of two different types of membranes (a commercial membrane, PuraMem® S600, and a development product, Lab-1, from Evonik Membrane Extraction Technology Limited) and covered three module sizes (1.8″×12″, 2.5″×40″ and 4.0″×40″). All modules had the same feed and permeate spacers. The classical solution diffusion model was applied to describe the transport of solute and solvent through the membrane and regress the unknown model parameters from flat sheet data. Correlations for characterising the fluid dynamics and mass transfer in the spiral-wound membrane modules, as well as the parameters describing the feed and permeate channels, were determined by performing the regression of experimental data of a 1.8″×12″ PuraMem® S600 membrane module. The classical solution-diffusion model, combined with the film theory, was then successfully applied to predict the performance of other modules of larger size (such as the 2.5″×40″ and 4.0″×40″ module sizes) and/or made of a different membrane material (such as Lab-1). The procedure proposed in this paper predicts the performance of a specific module by obtaining a limited number of experimental data for flat sheets and a 1.8″×12″ spiral-wound membrane module only (necessary to obtain the fitting parameters characteristic of the membrane and the module). Furthermore, with this procedure, it is not necessary to know a priori the spacer geometry, because the necessary information about the spacer geometry will be also obtained by regression of few experimental data.