Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mihalev T."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Arduino-Based Sensor System Prototype for Microclimate Monitoring of an Experimental Greenhouse †
    (2025-01-01) Belovski I.; Mihalev T.; Koleva E.; Mandadzhiev A.
    Arduino-based sensor systems are gaining widespread adoption in modern technological applications due to their accessibility, low-cost components, diverse sensor compatibility, high reliability, and user-friendly programming. Because of these advantages, such a system was selected to monitor and control microclimate parameters in a small-scale experimental greenhouse. The greenhouse will cultivate several vegetable species in soils with varying zeolite concentrations. The aim of this paper is to present the design and prototype development of a sensor system capable of tracking key environmental parameters, including temperature, humidity, atmospheric pressure, and soil moisture, while also enabling automated irrigation.
  • No Thumbnail Available
    Item
    Cyber-Physical System for Treatment of River and Lake Water †
    (2025-01-01) Syulekchieva D.; Midyurova B.; Mandadzhiev A.; Belovski I.; Mihalev T.; Koleva E.
    Water plays a fundamental role in sustaining biological processes, ecological functions, and economic systems. However, the progressive pollution of water sources compromises these functions, posing significant threats to water purity, human well-being, and environmental sustainability. Human activities, such as industrial waste, agriculture, and urbanization, alongside natural processes, are major contributors to the deterioration of surface water quality, which in turn leads to environmental and economic risks. The decline in water quality results in issues such as waterborne diseases, loss of biodiversity, and a shortage of clean water for consumption and industrial use. This paper emphasizes the critical need for maintaining good water quality and the importance of implementing effective strategies for the removal of physical, chemical, and biological contaminants. In response, this work presents an intelligent embedded system (electronic control unit, ECU) developed as part of a modular filtration system designed to improve surface water quality, provide more precise water analyses, and perform tests within a controlled environment.

UCTM copyright © 2002-2026

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback