Browsing by Author "Nikolov Palichev G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Commercial Ebullated Bed Vacuum Residue Hydrocracking Performance Improvement during Processing Difficult Feeds(2023-03-01) Georgiev B.E.; Stratiev D.S.; Argirov G.S.; Nedelchev A.; Dinkov R.; Shishkova I.K.; Ivanov M.; Atanassov K.; Ribagin S.; Nikolov Palichev G.; Nenov S.; Sotirov S.; Sotirova E.; Pilev D.; Stratiev D.D.The Urals and Siberian vacuum residues are considered difficult to process in the ebullated bed hydrocracking because of their increased tendency to form sediments. Their achievable conversion rate reported in the literature is 60%. Intercriteria analysis was used to assess data from a commercial vacuum residue hydrocracker during processing blends from three vacuum residues: Urals, Siberian Light, and Basra Heavy. The analysis revealed that the main contributors to conversion enhancement is hydrodemetallization (HDM) and the first reactor ΔT augmentation. The increase of HDM from 40 to 98% and the first reactor ΔT (ΔT(R1)) from 49 to 91 °C were associated with a vacuum residue conversion enhancement of 62.0 to 82.7 wt.%. The developed nonlinear regression prediction of conversion from HDM and ΔT(R1) suggests a bigger influence of ΔT(R1) enhancement on conversion augmentation than the HDM increase. The intercriteria analysis evaluation revealed that the higher first reactor ΔT suppresses the sediment formation rate to a greater extent than the higher HDM. During processing Basrah Heavy vacuum residue, a reduction in hydrodeasphaltization (HDAs) from 73.6 to 55.2% and HDM from 88 to 81% was observed. It was confirmed that HDM and HDAs are interrelated. It was found that the attainment of conversion of 80 wt.% and higher during processing Urals and Siberian Light vacuum residues is possible when the HDM is about 90% and LHSV ≤ 0.19 h−1.Item Correlations of HTSD to TBP and Bulk Properties to Saturate Content of a Wide Variety of Crude Oils(2023-02-01) Stratiev D.; Dinkov R.; Tavlieva M.; Shishkova I.; Nikolov Palichev G.; Ribagin S.; Atanassov K.; Stratiev D.D.; Nenov S.; Pilev D.; Sotirov S.; Sotirova E.; Simeonov S.; Boyadzhieva V.Forty-eight crude oils with variations in specific gravity (0.782 ≤ SG ≤ 1.002), sulphur content (0.03 ≤ S ≤ 5.6 wt.%), saturate content (23.5 ≤ Sat. ≤ 92.9 wt.%), asphaltene content (0.1 ≤ As ≤ 22.2 wt.%), and vacuum residue content (1.4 ≤ VR ≤ 60.7 wt.%) were characterized with HTSD, TBP, and SARA analyses. A modified SARA analysis of petroleum that allows for the attainment of a mass balance ≥97 wt.% for light crude oils was proposed, a procedure for the simulation of petroleum TBP curves from HTSD data using nonlinear regression and Riazi’s distribution model was developed, and a new correlation to predict petroleum saturate content from specific gravity and pour point with an average absolute deviation of 2.5 wt.%, maximum absolute deviation of 6.6 wt.%, and bias of 0.01 wt.% was developed. Intercriteria analysis was employed to evaluate the presence of statistically meaningful relations between the different petroleum properties and to evaluate the extent of similarity between the studied petroleum crudes. It was found that the extent of similarity between the crude oils based on HTSD analysis data could be discerned from data on the Kw characterization factor of narrow crude oil fractions. The results from this study showed that contrary to the generally accepted concept of the constant Kw characterization factor, the Kw factors of narrow fractions differ from that of crude oil. Moreover, the distributions of Kw factors of the different crudes were different.