Browsing by Author "Pechlivanova D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Behavioral Effects and Analgesic Profile of Hemoglobin-Derived Valorphin and Its Synthetic Analog in Rodents(2023-10-01) Todorov P.; Assenov B.; Angelov D.; Dzhambazova E.; Pechlivanova D.Valorphin (V1) is a naturally occurring peptide derived from hemoglobin that has been found to have an affinity for opioid receptors and exhibits antinociceptive and anticonvulsant activity. Some of its synthetic analogs containing an aminophosphonate moiety show structure-dependent potent antinociceptive effects. This study aimed to reveal a detailed picture of the antinociceptive mechanisms and behavioral effects of V1 and its recently synthesized phosphopeptide analog V2p in rodents using a range of methods. The studied peptides significantly reduced acute (mean V1–9.0, V2p–5.8 vs. controls–54.1 s) and inflammatory (mean V1–57.9 and V2p–53.3 vs. controls–107.6 s) nociceptive pain in the formalin test, as well as carrageenan-induced hyperalgesia (mean V1–184.7 and V2p–107.3 vs. controls–61.8 g) in the paw pressure test. These effects are mediated by activation of opioid receptors with a predominance of kappa in V1 antinociception and by delta, kappa, and mu receptors in V2p-induced antinociception. Both peptides did not change the levels of TNF-alpha and IL-1-beta in blood serum. V1 induces depression-like behavior, and V2p shows a tendency toward anxiolysis and short-term impairment of motor coordination without affecting exploratory behavior. The results characterize valorphin and its derivative as promising analgesics that exert their effects both centrally and peripherally, without causing severe behavioral changes in experimental animals. These encouraging data are a foundation for future studies focusing on the effects of hemorphins after long-term treatment.Item Synthesis, molecular docking, electrochemical and fluorimetric analysis of new caffeic and cinnamic acid-conjugated hemorphin derivatives designed as potential anticonvulsant and antinociceptive agents(2024-02-01) Todorov P.; Georgieva S.; Peneva P.; Nikolov S.; Rangelov M.; Todorova N.; Pechlivanova D.; Tchekalarova J.Based on the pharmacophore model of opioid receptors, our team recently synthesized a series of short‐chain hemorphin peptide analogs containing non‐natural amino acids. They demonstrated anticonvulsant and antinociceptive activity with low neurotoxicity. In the present study, a series of novel bioconjugates of N-modified hemorphin analogs containing second pharmacophore cinnamic acids (CA) or caffeic (KA) were synthesized by a traditional solid-phase Fmoc chemistry method for peptide synthesis. Electrochemical and fluorimetric analysis, in vivo anticonvulsant and antinociceptive activity in mice were conducted on the compounds. The three CA acid- (H4-CA, H5-CA, and H7-CA) and three KA acid- (H4-KA, H5-KA, and H7-KA) conjugated hemorphin derivatives exhibited potency at the highest doses of 2 µg/5 µl, administered by intracerebroventricular (icv) mode, against seizure spread in the maximal electroshock test (MES) in mice. The KA-conjugated H5-KA derivate, at the lowest dose, was the only compound that suppressed clonic seizures in the subcutaneous pentylenetetrazol (scPTZ) test. Except for the H5-CA, all tested CA acid- and KA acid-conjugated peptide derivates had the potency to increase the latency for clonic seizures in a dose-dependent mode. The activity against the psychomotor seizures in the 6-Hz test was detected only for the H4-CA (0.5 µg) and H4-KA (0.5 µg and 1 µg), respectively. All investigated peptides showed a more pronounced antinociceptive effect in the “intraplantar formalin” test compared to the “hot plate” test. Shorter chain analogs showed a better antinociceptive profile against tonic pain. The data suggest a DOR and KOR-mediated mechanism of action. According to the docking analysis, H7-CA showed a different antinociceptive profile than other investigated peptides. The novel peptide derivates did not exhibit neurotoxicity in the rotarod test. Our findings suggest that conjugated CA and KA morphine peptides can be used to develop novel morphine-related analogs with anticonvulsant and antinociceptive activity.