Browsing by Author "Petrov I."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item COMMERCIAL AND LABORATORY EXPERIENCE WITH CATALYTIC CRACKING OF STRAIGHT RUN HYDROTREATED VACUUM GAS OIL AND H-OIL GAS OILS(2022-01-01) Stratiev D.; Shishkova I.; Ivanov M.; Petrov I.; Atanassova V.; Ribagin S.; Atanassov K.; Toteva V.; Stratiev D.This study presents for the first time an investigation of fluid catalytic cracking of 100 % H-vacuum gas oil at a commercial FCC unit. 100 % straight run hydrotreated vacuum gas oil (HTSRVGO) and 100 % H-vacuum gas oil have been cracked in the commercial LUKOIL Neftohim Burgas fluid catalytic cracking and in a laboratory confined ebbulated bed ACE catalytic cracking unit. The relations between the operating conditions of the commercial FCC unit and conversion level in both cases 100 % HTSRVGO and its blends with H-Oil VGO were investigated using intercriteria analysis. Multiple regressions were developed to quantify the effect of the operating conditions as well as quantity and quality of H-Oil VGO on conversion level in the commercial FCC unit. ACE laboratory tests with feed containing about 20 % H-Oil VGO at different catalyst-to-oil ratios and reaction temperature were performed and the results are discussed.Item Experience in Processing Alternative Crude Oils to Replace Design Oil in the Refinery(2024-06-01) Stratiev D.; Shiskova I.; Toteva V.; Georgiev G.; Dinkov R.; Kolev I.; Petrov I.; Argirov G.; Bureva V.; Ribagin S.; Atanassov K.; Nenov S.; Sotirov S.; Nikolova R.; Veli A.A comprehensive investigation of a highly complex petroleum refinery (Nelson complexity index of 10.7) during the processing of 11 crude oils and an imported atmospheric residue replacing the design Urals crude oil was performed. Various laboratory oil tests were carried out to characterize both crude oils, and their fractions. The results of oil laboratory assays along with intercriteria and regression analyses were employed to find quantitative relations between crude oil mixture quality and refining unit performance. It was found that the acidity of petroleum cannot be judged by its total acid number, and acid crudes with lower than 0.5 mg KOH/g and low sulphur content required repeated caustic treatment enhancement and provoked increased corrosion rate and sodium contamination of the hydrocracking catalyst. Increased fouling in the H-Oil hydrocracker was observed during the transfer of design Urals crude oil to other petroleum crudes. The vacuum residues with higher sulphur, lower nitrogen contents, and a lower colloidal instability index provide a higher conversion rate and lower fouling rate in the H-Oil unit. The regression equations developed in this work allow quantitative assessment of the performance of crucial refining units like the H-Oil, fluid catalytic cracker, naphtha reformer, and gas oil hydrotreatment based on laboratory oil test results.Item Petroleum Crude Slate, Catalyst Properties and H-Oil VGO Properties Effects on a Commercial FCC Unit Performance(2021-01-01) Stratiev D.; Shishkova I.; Petrov I.; Yordanov D.; Toteva V.The performance of the commercial LUKOIL Neftohim Burgas fluid catalytic cracking unit (LNB FCCU) during processing 24 blends of straight run vacuum gas oils originating from 16 petroleum crudes and an imported atmospheric residue and employment of four catalysts was evaluated. It was found that the nature of the petroleum crudes processed in the ratios employed had no effect on the LNB FCCU performance. Instead, the content of the H-Oil vacuum gas oil (VGO) and its quality quantified by Kw-characterization factor was found to control the LNB FCCU conversion level. Based on the LNB FCCU commercial data a regression was developed quantifying the effect of equilibrium catalyst activity, H-Oil quality, and quantity in the fluid catalytic cracking (FCC) feed, and catalyst-to-oil ratio on the level of conversion. The regression was used to evaluate the impact of catalyst activity and catalyst-to-oil ratio, that is known to be a function of catalyst Δ coke selectivity, on the FCC conversion.