Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wisniewski W."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Barium Titanate-Based Glass–Ceramics Crystallized from Multicomponent Oxide Glasses: Phase Composition and Microstructure
    (2025-08-01) Harizanova R.; Wisniewski W.; Tatchev D.M.; Avdeev G.; Nedev S.; Rüssel C.
    The interest in synthesizing new dielectric materials is caused by their potential application in various electronic and sensor devices as well as in a large variety of electronic components. The present work reports the synthesis of glasses in the Na2O/Al2O3/BaO/ZrO2/TiO2/B2O3/SiO2 system prepared by melt-quenching. These glasses were then crystallized to glass–ceramics by a controlled thermal treatment. X-ray diffraction experiments reveal the precipitation of Ba2TiSi2O8 (fresnoite) and BaTiO3, which probably forms a BaZrxTi1−xO3 solid solution. The microstructure is studied by scanning electron microscopy and shows the presence of mulberry-shaped, crystallized structures with a densely-branching morphology. Microcomputed X-ray tomography is used to gather information on the volume fraction and average size of the crystallized volume as an effect of the applied temperature–time schedule. Longer annealing times lead to a higher volume fraction and increasing average size of the crystallization structures obtained. The dielectric properties analyzed by impedance spectroscopy are insulating and show relatively high dielectric constants ≥ 100 and moderate loss tangent values at 10 kHz.
  • No Thumbnail Available
    Item
    Growing Oriented Layers of Bi4Ti3O12 in Bi2O3/TiO2/SiO2/Nd2O3/Al2O3 Glass-Ceramics by Melt Quenching
    (2018-12-01) Wisniewski W.; Slavov S.; Rüssel C.; Dimitriev Y.
    A glass melt with the composition 24Bi2O3/40TiO2/10SiO2/10Nd2O3/16 Al2O3 was prepared and rapidly quenched between two copper blocks (sample A). A part of this glass was subsequently crystallised at 800 °C for 8 h (sample B). For the preparation of another two samples, the melt was slowly cooled on a cooper plate (sample C) or cast into a graphite mould and subsequently thermally treated at 300 °C for 3 h (sample D). As shown by X-ray diffraction (XRD) and scanning electron microscopy (SEM) including energy dispersive X-ray spectroscopy (EDXS) and electron backscatter diffraction (EBSD) measurements, the rapidly cooled samples contained notable amounts of uncrystallised glassy phase next to the Aurivillius phase Bi4Ti3O12. The latter occurred in higher concentrations in all other samples and formed oriented layers. Minor concentrations of Bi2Al4O9 and Al2O3 were also detected in the microstructure.
  • No Thumbnail Available
    Item
    Growing Oriented Layers of Bi4Ti3O12 in Bi2O3/TiO2/SiO2/Nd2O3/Al2O3 Glass-Ceramics by Melt Quenching
    (2018-12-01) Wisniewski W.; Slavov S.; Rüssel C.; Dimitriev Y.
    A glass melt with the composition 24Bi2O3/40TiO2/10SiO2/10Nd2O3/16 Al2O3 was prepared and rapidly quenched between two copper blocks (sample A). A part of this glass was subsequently crystallised at 800 °C for 8 h (sample B). For the preparation of another two samples, the melt was slowly cooled on a cooper plate (sample C) or cast into a graphite mould and subsequently thermally treated at 300 °C for 3 h (sample D). As shown by X-ray diffraction (XRD) and scanning electron microscopy (SEM) including energy dispersive X-ray spectroscopy (EDXS) and electron backscatter diffraction (EBSD) measurements, the rapidly cooled samples contained notable amounts of uncrystallised glassy phase next to the Aurivillius phase Bi4Ti3O12. The latter occurred in higher concentrations in all other samples and formed oriented layers. Minor concentrations of Bi2Al4O9 and Al2O3 were also detected in the microstructure.

UCTM copyright © 2002-2026

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback