Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yang X.J."

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Advances on integrodifferential equations and transforms
    (2015-01-01) Srivastava H.M.; Yang X.J.; Baleanu D.; Nieto J.J.; Hristov J.
  • No Thumbnail Available
    Item
    Modelling fractal waves on shallow water surfaces via local fractional korteweg-de vries equation
    (2014-01-01) Yang X.J.; Hristov J.; Srivastava H.M.; Ahmad B.
    A mathematical model of fractal waves on shallow water surfaces is developed by using the concepts of local fractional calculus. The derivations of linear and nonlinear local fractional versions of the Korteweg-de Vries equation describing fractal waves on shallow water surfaces are obtained. © 2014 Xiao-Jun Yang et al.
  • No Thumbnail Available
    Item
    Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow
    (2016-04-01) Yang X.J.; Machado J.A.T.; Hristov J.
    The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.
  • No Thumbnail Available
    Item
    Special issue on advances in fractional dynamics in mechanical engineering
    (2016-06-01) Yang X.J.; Lopes A.M.; Hristov J.Y.; Cattani C.; Baleanu D.; Mohyud-Din S.T.

UCTM copyright © 2002-2025

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback