Replacing the finite difference methods for nonlinear two-point boundary value problems by successive application of the linear shooting method
No Thumbnail Available
Date
2019-10-01
External link to pdf file
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063203999&origin=inward
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This paper studies numerical solution of nonlinear two-point boundary value problems for second order ordinary differential equations. First, it establishes a connection between the finite difference method and the quasi-linearization method. We prove that using finite differences to discretize the sequence of linear differential equations arising from quasi-linearization (Newton method on operator level) leads to the usual iteration formula of the Newton finite difference method. From the provided derivation, it can easily be inferred that such a relation holds also for the Picard and the constant-slope methods. Based on this result, we propose a way of replacing the Newton, Picard, and constant-slope finite difference methods by respective successive application of the linear shooting method. This approach has a number of advantages. It removes the necessity of solving systems of algebraic equations, hence working with matrices, altogether. Compared to the usual finite difference method with general solver, it reduces the number of computational operations from O(N 3 ), where N is the number of mesh-points, to only O(N).