Browsing by Author "Hristova-Avakumova N."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Evaluation of the combined activity of benzimidazole arylhydrazones as new anti-Parkinsonian agents: Monoamine oxidase-B inhibition, neuroprotection and oxidative stress modulation(2021-11-01) Anastassova N.; Aluani D.; Kostadinov A.; Rangelov M.; Todorova N.; Hristova-Avakumova N.; Argirova M.; Lumov N.; Kondeva-Burdina M.; Tzankova V.; Yancheva D.Neuroprotective drugs and selective monoamine oxidase inhibitors can slow down the progression and improve symptoms of Parkinson's disease (PD). Since there is an implication of oxidative stress in the pathophysiological mechanisms of the disease, the compounds possessing an ability to reduce the oxidative stress are prime candidates for neuroprotection. Thereby our current study is focused on the development of new multi-target PD drugs capable of inhibiting the activity of monoamine oxidase-B while exerting neuroprotective and antioxidant properties. A small series of benzimidazole derivatives containing hydroxy and methoxy arylhydrazone fragments has been synthesized and the neurotoxicity of the compounds has been evaluated in vitro on neuroblastoma SH-SY5Y cells and on isolated rat brain synaptosomes by measuring the cell viability and the levels of reduced glutathione and a good safety profile has been shown. The 2-hydroxy-4-methoxy substituted arylhydrazone 7 was the least toxic on neuronal SH-SY5Y cells and showed the lowest neurotoxicity in rat brain synaptosomes. The neuroprotective properties of the test compounds were further assessed using two models: H2O2-induced oxidative stress on SH-SY5Y cells and 6-hydroxydopamine-induced neurotoxicity in rat brain synaptosomes. Compound 7 showed more pronounced neuroprotective activity on SH-SY5Y cells, compared to the referent melatonin and rasagiline. It also preserved the synaptosomal viability and the reduced glutathione levels; the effects were stronger than those of rasagiline and comparable to melatonin. All the tested compounds were capable to inhibit human monoamine oxidase-B enzyme to a significant extent, however, compound 7 exerted the most prominent inhibitory activity, similar to selegiline and rasagiline. The carried out molecular docking studies revealed that the activity is related to the appropriate molecular structure enabling the ligand to enter deeper in the narrow and highly lipophylic active site pocket of the human monoamine oxidase-B and has a favoring interaction with the key amino acid residues Tyr326 and Cys172. Since much scientific evidence points out the implication of iron dyshomeostasis in PD, the compounds were tested to reduce the ferrous iron induced oxidative molecular damage on biologically important molecules in an in vitro lecithin containing model system. All the investigated compounds denoted protection effect, stronger than the one of the referent melatonin. In order to support the assignments of the significant neuroprotective and antioxidant pharmacological activities, the radical-scavenging mechanisms of the most promising compound 7 were evaluated using DFT methods. It was found that the most probable free radicals scavenging mechanism in nonpolar phase is the hydrogen atom transfer from the amide group of compound 7, while in polar medium the process is expected to occur by a proton transfer. The current study outlines a perspective leading structure, bearing the potential for a new anti-PD drug. All performed procedures were approved by the Institutional Animal Care Committee of the Medical University of Sofia (Bulgarian Agency for Food Safety with Permission № 190, approved on February 6, 2020).Item Evaluation of the combined activity of benzimidazole arylhydrazones as new anti-Parkinsonian agents: Monoamine oxidase-B inhibition, neuroprotection and oxidative stress modulation(2021-11-01) Anastassova N.; Aluani D.; Kostadinov A.; Rangelov M.; Todorova N.; Hristova-Avakumova N.; Argirova M.; Lumov N.; Kondeva-Burdina M.; Tzankova V.; Yancheva D.Neuroprotective drugs and selective monoamine oxidase inhibitors can slow down the progression and improve symptoms of Parkinson's disease (PD). Since there is an implication of oxidative stress in the pathophysiological mechanisms of the disease, the compounds possessing an ability to reduce the oxidative stress are prime candidates for neuroprotection. Thereby our current study is focused on the development of new multi-target PD drugs capable of inhibiting the activity of monoamine oxidase-B while exerting neuroprotective and antioxidant properties. A small series of benzimidazole derivatives containing hydroxy and methoxy arylhydrazone fragments has been synthesized and the neurotoxicity of the compounds has been evaluated in vitro on neuroblastoma SH-SY5Y cells and on isolated rat brain synaptosomes by measuring the cell viability and the levels of reduced glutathione and a good safety profile has been shown. The 2-hydroxy-4-methoxy substituted arylhydrazone 7 was the least toxic on neuronal SH-SY5Y cells and showed the lowest neurotoxicity in rat brain synaptosomes. The neuroprotective properties of the test compounds were further assessed using two models: H2O2-induced oxidative stress on SH-SY5Y cells and 6-hydroxydopamine-induced neurotoxicity in rat brain synaptosomes. Compound 7 showed more pronounced neuroprotective activity on SH-SY5Y cells, compared to the referent melatonin and rasagiline. It also preserved the synaptosomal viability and the reduced glutathione levels; the effects were stronger than those of rasagiline and comparable to melatonin. All the tested compounds were capable to inhibit human monoamine oxidase-B enzyme to a significant extent, however, compound 7 exerted the most prominent inhibitory activity, similar to selegiline and rasagiline. The carried out molecular docking studies revealed that the activity is related to the appropriate molecular structure enabling the ligand to enter deeper in the narrow and highly lipophylic active site pocket of the human monoamine oxidase-B and has a favoring interaction with the key amino acid residues Tyr326 and Cys172. Since much scientific evidence points out the implication of iron dyshomeostasis in PD, the compounds were tested to reduce the ferrous iron induced oxidative molecular damage on biologically important molecules in an in vitro lecithin containing model system. All the investigated compounds denoted protection effect, stronger than the one of the referent melatonin. In order to support the assignments of the significant neuroprotective and antioxidant pharmacological activities, the radical-scavenging mechanisms of the most promising compound 7 were evaluated using DFT methods. It was found that the most probable free radicals scavenging mechanism in nonpolar phase is the hydrogen atom transfer from the amide group of compound 7, while in polar medium the process is expected to occur by a proton transfer. The current study outlines a perspective leading structure, bearing the potential for a new anti-PD drug. All performed procedures were approved by the Institutional Animal Care Committee of the Medical University of Sofia (Bulgarian Agency for Food Safety with Permission № 190, approved on February 6, 2020).Item New Indole-3-Propionic Acid and 5-Methoxy-Indole Carboxylic Acid Derived Hydrazone Hybrids as Multifunctional Neuroprotectors(2023-04-01) Anastassova N.; Stefanova D.; Hristova-Avakumova N.; Georgieva I.; Kondeva-Burdina M.; Rangelov M.; Todorova N.; Tzoneva R.; Yancheva D.In light of the known neuroprotective properties of indole compounds and the promising potential of hydrazone derivatives, two series of aldehyde-heterocyclic hybrids combining those pharmacophores were synthesized as new multifunctional neuroprotectors. The obtained derivatives of indole-3-propionic acid (IPA) and 5-methoxy-indole carboxylic acid (5MICA) had good safety profiles: Hemolytic effects < 5% (200 μM) and IC50 > 150 µM were found in the majority of the SH-SY5Y and bEnd3 cell lines. The 2,3-dihydroxy, 2-hydroxy-4-methoxy, and syringaldehyde derivatives of 5MICA exhibited the strongest neuroprotection against H2O2-induced oxidative stress in SH-SY5Y cells and 6-OHDA-induced neurotoxicity in rat-brain synaptosomes. All the compounds suppressed the iron-induced lipid peroxidation. The hydroxyl derivatives were also the most active in terms of deoxyribose-degradation inhibition, whereas the 3,4-dihydroxy derivatives were able to decrease the superoxide-anion generation. Both series of compounds showed an increased inhibition of hMAO-B, with greater expression detected in the 5MICA hybrids. The in vitro BBB model with the bEnd3 cell line showed that some compounds increased the permeability of the endothelial monolayer while maintaining the tight junctions. The combined results demonstrated that the derivatives of IPA and 5MICA showed strong neuroprotective, antioxidant, MAO-B inhibitory activity and could be considered as prospective multifunctional compounds for the treatment of neurodegenerative disorders.Item Two 5-Methoxyindole Carboxylic Acid-Derived Hydrazones of Neuropharmacological Interest: Synthesis, Crystal Structure, and Chemiluminescent Study of Radical Scavenging Properties(2024-05-01) Anastassova N.; Hristova-Avakumova N.; Rusew R.; Shivachev B.; Yancheva D.Given the importance of molecular structure in pharmacological activity and interaction with biological receptors, we conducted a study on the 3,4-dihydroxybenzaldehyde hydrazone derivative of 5-methoxy-indole carboxylic acid (5MICA) and a newly synthesised analogue bearing a 2-methoxy-4-hydroxyphenyl ring using single-crystal X-ray diffraction. We studied the ability of the two compounds to scavenge hypochlorite ions using luminol-enhanced chemiluminescence and their potential to modulate oxidative damage induced by iron on the biologically significant molecules lecithin and deoxyribose in order to evaluate possible antioxidant and prooxidant effects. The X-ray study revealed highly conserved geometry and limited rotation and deformation freedom of the respective indole and phenyl fragments. Interestingly, a conformational difference between the two independent molecules in the asymmetric unit of 3b was found. The X-ray study revealed a combination of hydrogen bonding interactions, short contacts, and π–π stacking stabilizing the specific three-dimensional packing of the molecules of 3a and 3b in the crystal structures. The three-dimensional packing of the molecules of 3b produced a zigzag layering projected along the c-axis. Both compounds effectively decreased luminol-dependent chemiluminescence in model systems with KO2-produced superoxide. They displayed opposite effects when applied in a xanthine/xanthine oxidase system. The hydrazones of 5MICA do not trigger a prooxidant effect or subsequent toxicity under conditions of iron-induced oxidative stress. The 3,4-dihydroxy-substituted derivative demonstrated excellent radical scavenging properties in all model systems, making it the lead compound for the development of compounds with combined neuroprotective and antioxidant properties.