Two 5-Methoxyindole Carboxylic Acid-Derived Hydrazones of Neuropharmacological Interest: Synthesis, Crystal Structure, and Chemiluminescent Study of Radical Scavenging Properties

No Thumbnail Available
Date
2024-05-01
External link to pdf file
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85194264818&origin=inward
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Given the importance of molecular structure in pharmacological activity and interaction with biological receptors, we conducted a study on the 3,4-dihydroxybenzaldehyde hydrazone derivative of 5-methoxy-indole carboxylic acid (5MICA) and a newly synthesised analogue bearing a 2-methoxy-4-hydroxyphenyl ring using single-crystal X-ray diffraction. We studied the ability of the two compounds to scavenge hypochlorite ions using luminol-enhanced chemiluminescence and their potential to modulate oxidative damage induced by iron on the biologically significant molecules lecithin and deoxyribose in order to evaluate possible antioxidant and prooxidant effects. The X-ray study revealed highly conserved geometry and limited rotation and deformation freedom of the respective indole and phenyl fragments. Interestingly, a conformational difference between the two independent molecules in the asymmetric unit of 3b was found. The X-ray study revealed a combination of hydrogen bonding interactions, short contacts, and π–π stacking stabilizing the specific three-dimensional packing of the molecules of 3a and 3b in the crystal structures. The three-dimensional packing of the molecules of 3b produced a zigzag layering projected along the c-axis. Both compounds effectively decreased luminol-dependent chemiluminescence in model systems with KO2-produced superoxide. They displayed opposite effects when applied in a xanthine/xanthine oxidase system. The hydrazones of 5MICA do not trigger a prooxidant effect or subsequent toxicity under conditions of iron-induced oxidative stress. The 3,4-dihydroxy-substituted derivative demonstrated excellent radical scavenging properties in all model systems, making it the lead compound for the development of compounds with combined neuroprotective and antioxidant properties.
Description
Keywords
Citation
Collections