Articles

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 10 of 10
  • Item
    Challenges in Petroleum Characterization—A Review
    (MDPI AG, 2022-10-20) Ivelina Shishkova; Dicho Stratiev; Iliyan Venkov Kolev; Svetoslav Nenov; Dimitar Nedanovski; Krassimir Atanassov; Vitaly Ivanov; Simeon Ribagin
    252 literature sources and about 5000 crude oil assays were reviewed in this work. The review has shown that the petroleum characterization can be classified in three categories: crude oil assay; SARA characterization; and molecular characterization. It was found that the range of petroleum property variation is so wide that the same crude oil property cannot be measured by the use of a single standard method. To the best of our knowledge for the first time the application of the additive rule to predict crude oil asphaltene content from that of the vacuum residue multiplied by the vacuum residue TBP yield was examined. It was also discovered that a strong linear relation between the contents of C5-, and C7-asphaltenes in crude oil and derived thereof vacuum residue fraction exists. The six parameter Weibull extreme function showed to best fit the TBP data of all crude oil types, allowing construction of a correct TBP curve and detection of measurement errors. A new SARA reconstitution approach is proposed to overcome the poor SARA analysis mass balance when crude oils with lower density are analyzed. The use of a chemometric approach with combination of spectroscopic data was found very helpful in extracting information about the composition of complex petroleum matrices consisting of a large number of components.
  • Item
    Self-Assembled Molecular Complexes of 1,10-Phenanthroline and 2-Aminobenzimidazoles: Synthesis, Structure Investigations, and Cytotoxic Properties
    (MDPI AG, 2024-01-24) Kameliya Anichina; Nikolay Kaloyanov; Diana Zasheva; Rusi Rusew; Rositsa Nikolova; Denitsa Yancheva; Ventsislav Bakov; Nikolai Georgiev
    Three new molecular complexes (phen)3(2-amino-Bz)2(H+)(BF4−)·3H2O 5, (phen)3(2-amino-5(6)-methyl-Bz)2(H+)(BF4−)·H2O 6, and (phen)(1-methyl-2-amino-Bz)(H+)(BF4−) 7, were prepared by self-assembly of 1,10-phenanthroline (phen) and various substituted 2-aminobenzimidazoles. Confirmation of their structures was established through spectroscopic methods and elemental analysis. The X-ray diffraction analysis revealed that the crystal structure of 7 is stabilized by the formation of hydrogen bonds and short contacts. In addition, the molecular geometry and electron structure of molecules 5 and 6 were theoretically evaluated using density functional theory (DFT) methods. According to the DFT B3LYP/6-311+G* calculations, the protonated benzimidazole (Bz) units act as NH hydrogen bond donors, binding two phenanthrolines and a BF4− ion. Non-protonated Bz unit form hydrogen bonds with the N-atoms of a third molecule phen. The molecular assembly is held together by π-π stacking between benzimidazole and phenanthroline rings, allowing for N-atoms to associate with water molecules. The complexes were tested in vitro for their tumor cell growth inhibitory effects on prostate (PC3), breast (MDA-MB-231 and MCF-7), and cervical (HeLa) cancer cell lines using MTT-dye reduction assay. The in vitro cytotoxicity analysis and spectrophotometric investigation in the presence of ct-DNA, showed that self-assembled molecules 5–7 are promising DNA-binding anticancer agents warranting further in-depth exploration.
  • Item
    Prediction of Molecular Weight of Petroleum Fluids by Empirical Correlations and Artificial Neuron Networks
    (MDPI AG, 2023-01-31) Dicho Stratiev; Sotir Sotirov; Evdokia Sotirova; Svetoslav Nenov; Rosen Dinkov; Ivelina Shishkova; Iliyan Venkov Kolev; Dobromir Yordanov; Svetlin Vasilev; Krassimir Atanassov; Stanislav Simeonov; Georgi Nikolov Palichev
    The exactitude of petroleum fluid molecular weight correlations affects significantly the precision of petroleum engineering calculations and can make process design and trouble-shooting inaccurate. Some of the methods in the literature to predict petroleum fluid molecular weight are used in commercial software process simulators. According to statements made in the literature, the correlations of Lee–Kesler and Twu are the most used in petroleum engineering, and the other methods do not exhibit any significant advantages over the Lee–Kesler and Twu correlations. In order to verify which of the proposed in the literature correlations are the most appropriate for petroleum fluids with molecular weight variation between 70 and 1685 g/mol, 430 data points for boiling point, specific gravity, and molecular weight of petroleum fluids and individual hydrocarbons were extracted from 17 literature sources. Besides the existing correlations in the literature, two different techniques, nonlinear regression and artificial neural network (ANN), were employed to model the molecular weight of the 430 petroleum fluid samples. It was found that the ANN model demonstrated the best accuracy of prediction with a relative standard error (RSE) of 7.2%, followed by the newly developed nonlinear regression correlation with an RSE of 10.9%. The best available molecular weight correlations in the literature were those of API (RSE = 12.4%), Goosens (RSE = 13.9%); and Riazi and Daubert (RSE = 15.2%). The well known molecular weight correlations of Lee–Kesler, and Twu, for the data set of 430 data points, exhibited RSEs of 26.5, and 30.3% respectively.
  • Item
    Characterization of Bulgarian Copper Mine Tailing as a Precursor for Obtaining Geopolymers
    (MDPI AG, 2024-01-23) Darya Ilieva; Lyudmila Angelova; Temenuzhka Radoykova; Andriana Surleva; Georgi Chernev; Petrica Vizureanu; Dumitru Burduhos-Nergis; Andrei Sandu
    Valorization of high-volume mine tailings could be achieved by the development of new geopolymers with a low CO2 footprint. Materials rich in aluminum and silicon with appropriate solubility in an alkaline medium can be used to obtain a geopolymer. This paper presents a study of copper mine tailings from Bulgaria as precursors for geopolymers. Particle size distribution, chemical and mineralogical composition, as well as alkaline reactivity, acidity and electroconductivity of aqueous slurry are studied. The heavy metal content and their mobility are studied by leaching tests. Sequential extraction was applied to determine the geochemical phase distribution of heavy metals. The studied samples were characterized by high alkalinity, which could favor the geopolymerization process. The water-soluble sulphates were less than 4%. The Si/Al ratio in mine tailing was found to be 3. The alkaline reactivity depended more so on the time of extraction than on the concentration of NaOH solution. The main part of the heavy metals was found in the residual fraction; hence, in high alkaline medium during the geopolymerization process, they will stay fixed. Thus, the obtained geopolymers could be expected to exert low environmental impact. The presented results revealed that studied copper mine tailing is a suitable precursor for geopolymerization.
  • Item
    Synthesis of Two Peptide Mimetics as Markers for Chemical Changes of Wools Keratin During Skin Unhairing Process
    (Bentham Science Publishers Ltd., 2008-05-01) Dantcho Danalev; Margarita Koleva; Dimitrina Ivanova; Lyubomir Vezenkov; Nikolay Vassilev
    The sheep skins unhairing process with preliminary alkaline treatment of the wool leads to two unnatural dipeptide mimetics lysinoalanine (Lys(*) - Ala) and ornithinoalanine (Orn(*)- Ala) obtaining. They are result from the keratin hydrolysis process. The changes of wool keratin make it resistant to sulphide degradation. We synthesized and characterized these unnatural dipeptides under the experimental conditions. The structures and mechanism of Lys(*) - Ala and Orn(*)- Ala obtaining were elucidated. The using of newly synthesized products as markers for control of wool's keratin changes during skin unhairing process was demonstrated. The developments have also been the result of economic and environmental pressures to meet environmental regulations.
  • Item
    Synthesis and Analgesic Activity of New Analogues of Tyr-MIF Including Pyrrole Moiety
    (Springer Science and Business Media LLC, 2015-12-18) Dancho L. Danalev; Stanislava P. Vladimirova; Borislav P. Borisov; Hristina H. Nocheva; Adriana I. Bocheva; Dessislava A. Marinkova; Emilia D. Naydenova; Valentin S. Lozanov
    Pain is one of many medical problems of modern society. Together with a number of other diseases such as heart attacks, strokes, tumors, etc. it ranks among the first in manifestation. There are a huge number of medical drugs more or less effective against pain in a practice. Globally, the searching of new molecules with analgesic activity and better selectivity or greater effect at lower doses continues. In addition, some groups trying to improve the properties of known molecules in medical practice as various heterocyclic compounds by modifying one or another of their part. Other groups work on the creation of new mimetics of natural molecules with well established physiological activity. In this global context, here we report the synthesis of two new compounds which are hybrid molecules between the specifically substituted pyrrole (Pyr) and analogues of Tyr-MIF-1 peptide. All investigations on the analgesic activity show better activity at the same dose than natural Tyr-MIF-1 peptide for the analogue Pyr-Tyr-Phe-Leu-Ala-OH. Compound Pyr-Ala-Leu-Phe-Tyr-OH has no better effect comparable to that of the parent peptide. The obtained results clearly show that it is essential that Tyr residue occupies N-terminal position of MIF-1 analogue. The lack of better activity of the analogue Pyr-Ala-Leu-Phe-Tyr-OH reveals that Pyr residue does not influence on the analgesic activity. In addition we found that C-terminal amide function generally presented in natural MIF-1 is not absolutely necessary for activity.
  • Item
    Synthesis, Hydrolytic Stability and In Vivo Biological Study of Bioconjugates of the Tetrapeptides FELL Containing Pyrrole Moiety
    (MDPI AG, 2023-12-09) Boryana Borisova; Stanislava Vladimirova; Hristina Nocheva; Marie Laronze-Cochard; Stéphane Gérard; Stoyko Petrin; Dancho Danalev
    Background: Bioconjugates are promising alternatives for the multiple targeting of any disease. Pyrrole heterocycle is well known with many activities and is a building block of a lot of medical drugs. On the other hand, peptides are short molecules with many advantages such as small size, ability to penetrate the cell membrane and bond-specific receptors, vectorizing potential, etc. Thus, hybrid molecules between peptide and pyrrole moiety could be a promising alternative as an anti-pain tool. Methods: New bioconjugates with a general formula Pyrrole (α-/β-acid)-FELL-OH (NH2) were synthesized using Fmoc/OtBu peptide synthesis on solid support. HPLC was used to monitor the purity of newly synthesized bioconjugates. Their structures were proven by electrospray ionization mass spectrometry. The Paw Pressure test (Randall–Selitto test) was used to examinate the analgesic activity. Hydrolytic stability of targeted structures was monitored in three model systems with pH 2.0, 7.4 and 9.0, including specific enzymes by means of the HPLC-UV method. Results: The obtained results reveal that all newly synthesized bioconjugates have analgesic activity according to the used test but free pyrrole acids have the best analgesic activity. Conclusions: Although free pyrrole acids showed the best analgesic activity, they are the most unstable for hydrolysis. Combination with peptide structure leads to the hydrolytic stabilization of the bioconjugates, albeit with slightly reduced activity.
  • Item
    Synthesis and Biological Studies on (KLAKLAK)2-NH2 Analog Containing Unnatural Amino Acid β-Ala and Conjugates with Second Pharmacophore
    (MDPI AG, 2021-12-02) Sirine Jaber; Veronica Nemska; Ivan Iliev; Elena Ivanova; Tsvetelina Foteva; Nelly Georgieva; Ivan Givechev; Emilia Naydenova; Veronika Karadjova; Dancho Danalev
    (1) Background: Peptides are good candidates for anticancer drugs due to their natural existence in the body and lack of secondary effects. (KLAKLAK)2 is an antimicrobial peptide that also shows good anticancer properties. (2) Methods: The Solid Phase Peptide Synthesis (Fmoc-strategy) was used for the synthesis of target molecules, analogs of (KLAKLAK)2-NH2. The purity of all compounds was monitored by HPLC, and their structures were proven using mass spectrometry. Cytotoxicity and antiproliferative effects were studied using 3T3 NRU and MTT tests, respectively. For determination of antimicrobial activity, the disc-diffusion method was used. Hydrolytic stability at three pH values, which mimic the physiological pH in the body, was investigated by means of the HPLC technique. (3) Results: A good selective index against MCF-7 tumor cell lines, combined with good cytotoxicity and antiproliferative properties, was revealed for conjugates NphtG-(KLAKLAK)2-NH2 and Caf-(KLAKLAK)2-NH2. The same compounds showed very good antifungal properties and complete hydrolytic stability for 72 h. The compound Caf-(KLβ-AKLβ-AK)2-NH2 containing β-Ala in its structures exhibited good antimicrobial activity against Escherichia coli K12 407 and Bacillus subtilis 3562, in combination with very good antiproliferative and cytotoxic properties, as well as hydrolytic stability. (4) Conclusions: The obtained results reveal that all synthesized conjugates could be useful for medical practice as anticancer or antimicrobial agents.
  • Item
    In vitro bioactivity of glass-ceramic/fibroin composites
    (University of Novi Sad, 2017-01-01) Lachezar Radev; Irena Michailova; Silviya Stateva; Diana Zaimova; Hristo Georgiev; Margarita Apostolova
    Bioactive composite materials were prepared by mixing 20 wt.% of silk fibroin (SF) and 80 wt.% of glassceramics from CaO-SiO2-P2O5-MgO system. In vitro bioactivity of the prepared composites was evaluated in 1.5 simulated body fluid (1.5 SBF) in static conditions. The obtained samples before and after in vitro tests were characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The changes in 1.5 SBF solutions after soaking the samples were evaluated by inductively coupled plasma atomic emission spectroscopy (ICP-AES). MG63 osteosarcoma cells were used for the biological experiments. The obtained experimental data proved that the synthesized composites exhibit excellent in vitro bioactivity.