Browsing by Author "Rusew R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Self-Assembled Molecular Complexes of 1,10-Phenanthroline and 2-Aminobenzimidazoles: Synthesis, Structure Investigations, and Cytotoxic Properties(2024-02-01) Anichina K.; Kaloyanov N.; Zasheva D.; Rusew R.; Nikolova R.; Yancheva D.; Bakov V.; Georgiev N.Three new molecular complexes (phen)3(2-amino-Bz)2(H+)(BF4−)·3H2O 5, (phen)3(2-amino-5(6)-methyl-Bz)2(H+)(BF4−)·H2O 6, and (phen)(1-methyl-2-amino-Bz)(H+)(BF4−) 7, were prepared by self-assembly of 1,10-phenanthroline (phen) and various substituted 2-aminobenzimidazoles. Confirmation of their structures was established through spectroscopic methods and elemental analysis. The X-ray diffraction analysis revealed that the crystal structure of 7 is stabilized by the formation of hydrogen bonds and short contacts. In addition, the molecular geometry and electron structure of molecules 5 and 6 were theoretically evaluated using density functional theory (DFT) methods. According to the DFT B3LYP/6-311+G* calculations, the protonated benzimidazole (Bz) units act as NH hydrogen bond donors, binding two phenanthrolines and a BF4− ion. Non-protonated Bz unit form hydrogen bonds with the N-atoms of a third molecule phen. The molecular assembly is held together by π-π stacking between benzimidazole and phenanthroline rings, allowing for N-atoms to associate with water molecules. The complexes were tested in vitro for their tumor cell growth inhibitory effects on prostate (PC3), breast (MDA-MB-231 and MCF-7), and cervical (HeLa) cancer cell lines using MTT-dye reduction assay. The in vitro cytotoxicity analysis and spectrophotometric investigation in the presence of ct-DNA, showed that self-assembled molecules 5–7 are promising DNA-binding anticancer agents warranting further in-depth exploration.Item Two 5-Methoxyindole Carboxylic Acid-Derived Hydrazones of Neuropharmacological Interest: Synthesis, Crystal Structure, and Chemiluminescent Study of Radical Scavenging Properties(2024-05-01) Anastassova N.; Hristova-Avakumova N.; Rusew R.; Shivachev B.; Yancheva D.Given the importance of molecular structure in pharmacological activity and interaction with biological receptors, we conducted a study on the 3,4-dihydroxybenzaldehyde hydrazone derivative of 5-methoxy-indole carboxylic acid (5MICA) and a newly synthesised analogue bearing a 2-methoxy-4-hydroxyphenyl ring using single-crystal X-ray diffraction. We studied the ability of the two compounds to scavenge hypochlorite ions using luminol-enhanced chemiluminescence and their potential to modulate oxidative damage induced by iron on the biologically significant molecules lecithin and deoxyribose in order to evaluate possible antioxidant and prooxidant effects. The X-ray study revealed highly conserved geometry and limited rotation and deformation freedom of the respective indole and phenyl fragments. Interestingly, a conformational difference between the two independent molecules in the asymmetric unit of 3b was found. The X-ray study revealed a combination of hydrogen bonding interactions, short contacts, and π–π stacking stabilizing the specific three-dimensional packing of the molecules of 3a and 3b in the crystal structures. The three-dimensional packing of the molecules of 3b produced a zigzag layering projected along the c-axis. Both compounds effectively decreased luminol-dependent chemiluminescence in model systems with KO2-produced superoxide. They displayed opposite effects when applied in a xanthine/xanthine oxidase system. The hydrazones of 5MICA do not trigger a prooxidant effect or subsequent toxicity under conditions of iron-induced oxidative stress. The 3,4-dihydroxy-substituted derivative demonstrated excellent radical scavenging properties in all model systems, making it the lead compound for the development of compounds with combined neuroprotective and antioxidant properties.