A Note on the integral approach to non-linear heat conduction with jeffrey's fading memory

creativework.keywordsApproximate solution, Fading memory, Integral balance approach, Jeffrey kernel, Non-linear diffusion
creativework.publisherSerbian Society of Heat Transfer Engineersen
dc.contributor.authorHristov J.
dc.date.accessioned2024-07-10T14:27:03Z
dc.date.accessioned2024-07-10T14:48:02Z
dc.date.available2024-07-10T14:27:03Z
dc.date.available2024-07-10T14:48:02Z
dc.date.issued2013-01-01
dc.description.abstractIntegral approach by using approximate profile is successfully applied to heat conduction equation with fading memory expressed by a Jeffrey's kernel. The solution is straightforward and the final form of the approximate temperature profile clearly delineates the ``viscous effects`` corresponding tothe classical Fourier law and the relaxation (fading memory). The optimal exponent of the approximatesolution is discussed in case of Dirichlet boundary condition.
dc.identifier.doi10.2298/TSCI120826076H
dc.identifier.issn0354-9836
dc.identifier.scopusSCOPUS_ID:84886794987en
dc.identifier.urihttps://rlib.uctm.edu/handle/123456789/291
dc.language.isoen
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84886794987&origin=inward
dc.titleA Note on the integral approach to non-linear heat conduction with jeffrey's fading memory
dc.typeArticle
oaire.citation.issue3
oaire.citation.volume17
Files
Collections