I-optimal curve for impulsive Lotka-Volterra predator-prey model

creativework.keywordsI-optimal curve, Impulsive Lotka-Volterra model, Predator-prey system
dc.contributor.authorAngelova J.
dc.contributor.authorDishliev A.
dc.contributor.authorNenov S.
dc.date.accessioned2024-07-10T14:27:02Z
dc.date.accessioned2024-07-10T14:46:55Z
dc.date.available2024-07-10T14:27:02Z
dc.date.available2024-07-10T14:46:55Z
dc.date.issued2002-05-01
dc.description.abstractFor the classical Lotka-Volterra predator-prey system, new notion I-optimal curve ξI is introduced. This curve is disposed in the phase space of the system. The curve ξI intersects each trajectory γc of Lotka-Volterra system at least once. The points of ξI possess the following optimal property: if (m, M) ∈ ξI ∩ γc(0), then after a ``jump`` with magnitude I to the origin of coordinates, it hits a trajectory γc(1) and c1 is minimal; i.e., γc(1) is the ``nearest`` to the stable centre. The minimality concerns the rest points of initial trajectory γc(0), from which the ``impulsive jumps`` (subtractings) with magnitude I to (0, 0) are realized. The monotonicity, continuity, and linear asymptotical behaviour of ξI curve are proved. © 2002 Elsevier Science Ltd. All rights reserved.
dc.identifier.doi10.1016/S0898-1221(02)00092-5
dc.identifier.issn0898-1221
dc.identifier.scopusSCOPUS_ID:0036567011en
dc.identifier.urihttps://rlib.uctm.edu/handle/123456789/75
dc.language.isoen
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0036567011&origin=inward
dc.titleI-optimal curve for impulsive Lotka-Volterra predator-prey model
dc.typeArticle
oaire.citation.issue10-11
oaire.citation.volume43
Files
Collections