I-optimal curve for impulsive Lotka-Volterra predator-prey model
creativework.keywords | I-optimal curve, Impulsive Lotka-Volterra model, Predator-prey system | |
dc.contributor.author | Angelova J. | |
dc.contributor.author | Dishliev A. | |
dc.contributor.author | Nenov S. | |
dc.date.accessioned | 2024-07-10T14:27:02Z | |
dc.date.accessioned | 2024-07-10T14:46:55Z | |
dc.date.available | 2024-07-10T14:27:02Z | |
dc.date.available | 2024-07-10T14:46:55Z | |
dc.date.issued | 2002-05-01 | |
dc.description.abstract | For the classical Lotka-Volterra predator-prey system, new notion I-optimal curve ξI is introduced. This curve is disposed in the phase space of the system. The curve ξI intersects each trajectory γc of Lotka-Volterra system at least once. The points of ξI possess the following optimal property: if (m, M) ∈ ξI ∩ γc(0), then after a ``jump`` with magnitude I to the origin of coordinates, it hits a trajectory γc(1) and c1 is minimal; i.e., γc(1) is the ``nearest`` to the stable centre. The minimality concerns the rest points of initial trajectory γc(0), from which the ``impulsive jumps`` (subtractings) with magnitude I to (0, 0) are realized. The monotonicity, continuity, and linear asymptotical behaviour of ξI curve are proved. © 2002 Elsevier Science Ltd. All rights reserved. | |
dc.identifier.doi | 10.1016/S0898-1221(02)00092-5 | |
dc.identifier.issn | 0898-1221 | |
dc.identifier.scopus | SCOPUS_ID:0036567011 | en |
dc.identifier.uri | https://rlib.uctm.edu/handle/123456789/75 | |
dc.language.iso | en | |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0036567011&origin=inward | |
dc.title | I-optimal curve for impulsive Lotka-Volterra predator-prey model | |
dc.type | Article | |
oaire.citation.issue | 10-11 | |
oaire.citation.volume | 43 |