Caratheodory differential equations on cones
creativework.keywords | Banach space, Cone, Differential equations, Genericity, Upper Lebesgue integral | |
creativework.publisher | Academic Press | en |
dc.contributor.author | Donchev T. | |
dc.contributor.author | Kolev D. | |
dc.contributor.author | Lazi A. | |
dc.contributor.author | Nosheen A. | |
dc.contributor.author | Rafaqat M. | |
dc.contributor.author | Zeinev A. | |
dc.date.accessioned | 2024-07-10T14:27:03Z | |
dc.date.accessioned | 2024-07-10T14:48:06Z | |
dc.date.available | 2024-07-10T14:27:03Z | |
dc.date.available | 2024-07-10T14:48:06Z | |
dc.date.issued | 2015-01-01 | |
dc.description.abstract | In this paper we prove that almost all, in Baire sense, differential equations with Scorza Dragoni right-hand side, defined on closed convex cone of a Banach space, have unique solution. This solution depends continuously on the right-hand side and on the initial condition. The results are applied to fuzzy differential equations and to differential inclusions. | |
dc.identifier.doi | 10.12732/ijpam.v98i1.11 | |
dc.identifier.issn | 1314-3395 | |
dc.identifier.issn | 1311-8080 | |
dc.identifier.scopus | SCOPUS_ID:84920765645 | en |
dc.identifier.uri | https://rlib.uctm.edu/handle/123456789/326 | |
dc.language.iso | en | |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84920765645&origin=inward | |
dc.title | Caratheodory differential equations on cones | |
dc.type | Article | |
oaire.citation.issue | 1 | |
oaire.citation.volume | 98 |