Caratheodory differential equations on cones

creativework.keywordsBanach space, Cone, Differential equations, Genericity, Upper Lebesgue integral
creativework.publisherAcademic Pressen
dc.contributor.authorDonchev T.
dc.contributor.authorKolev D.
dc.contributor.authorLazi A.
dc.contributor.authorNosheen A.
dc.contributor.authorRafaqat M.
dc.contributor.authorZeinev A.
dc.date.accessioned2024-07-10T14:27:03Z
dc.date.accessioned2024-07-10T14:48:06Z
dc.date.available2024-07-10T14:27:03Z
dc.date.available2024-07-10T14:48:06Z
dc.date.issued2015-01-01
dc.description.abstractIn this paper we prove that almost all, in Baire sense, differential equations with Scorza Dragoni right-hand side, defined on closed convex cone of a Banach space, have unique solution. This solution depends continuously on the right-hand side and on the initial condition. The results are applied to fuzzy differential equations and to differential inclusions.
dc.identifier.doi10.12732/ijpam.v98i1.11
dc.identifier.issn1314-3395
dc.identifier.issn1311-8080
dc.identifier.scopusSCOPUS_ID:84920765645en
dc.identifier.urihttps://rlib.uctm.edu/handle/123456789/326
dc.language.isoen
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84920765645&origin=inward
dc.titleCaratheodory differential equations on cones
dc.typeArticle
oaire.citation.issue1
oaire.citation.volume98
Files
Collections