On the initial value problem for fractional Volterra integrodifferential equations with a Caputo-Fabrizio derivative
creativework.keywords | Fractional nonclassical diffusion equation, Regularity estimates, Well-posednes | |
creativework.publisher | EDP Sciences | en |
dc.contributor.author | Baleanu D. | |
dc.contributor.author | Kumar D. | |
dc.contributor.author | Hristov J. | |
dc.contributor.author | Tuan N.H. | |
dc.contributor.author | Tuan N.A. | |
dc.contributor.author | O'Regan D. | |
dc.contributor.author | Tri V.V. | |
dc.date.accessioned | 2024-07-10T14:27:04Z | |
dc.date.accessioned | 2024-07-10T14:49:39Z | |
dc.date.available | 2024-07-10T14:27:04Z | |
dc.date.available | 2024-07-10T14:49:39Z | |
dc.date.issued | 2021-01-01 | |
dc.description.abstract | In this paper, a time-fractional integrodifferential equation with the Caputo-Fabrizio type derivative will be considered. The Banach fixed point theorem is the main tool used to extend the results of a recent paper of Tuan and Zhou [J. Comput. Appl. Math. 375 (2020) 112811]. In the case of a globally Lipschitz source terms, thanks to the Lp - Lq estimate method, we establish global in time well-posed results for mild solution. For the case of locally Lipschitz terms, we present existence and uniqueness results. Also, we show that our solution will blow up at a finite time. Finally, we present some numerical examples to illustrate the regularity and continuation of the solution based on the time variable. | |
dc.identifier.doi | 10.1051/mmnp/2021010 | |
dc.identifier.issn | 1760-6101 | |
dc.identifier.issn | 0973-5348 | |
dc.identifier.scopus | SCOPUS_ID:85103336770 | en |
dc.identifier.uri | https://rlib.uctm.edu/handle/123456789/636 | |
dc.language.iso | en | |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103336770&origin=inward | |
dc.title | On the initial value problem for fractional Volterra integrodifferential equations with a Caputo-Fabrizio derivative | |
dc.type | Article | |
oaire.citation.volume | 16 |