On the initial value problem for fractional Volterra integrodifferential equations with a Caputo-Fabrizio derivative

creativework.keywordsFractional nonclassical diffusion equation, Regularity estimates, Well-posednes
creativework.publisherEDP Sciencesen
dc.contributor.authorBaleanu D.
dc.contributor.authorKumar D.
dc.contributor.authorHristov J.
dc.contributor.authorTuan N.H.
dc.contributor.authorTuan N.A.
dc.contributor.authorO'Regan D.
dc.contributor.authorTri V.V.
dc.date.accessioned2024-07-10T14:27:04Z
dc.date.accessioned2024-07-10T14:49:39Z
dc.date.available2024-07-10T14:27:04Z
dc.date.available2024-07-10T14:49:39Z
dc.date.issued2021-01-01
dc.description.abstractIn this paper, a time-fractional integrodifferential equation with the Caputo-Fabrizio type derivative will be considered. The Banach fixed point theorem is the main tool used to extend the results of a recent paper of Tuan and Zhou [J. Comput. Appl. Math. 375 (2020) 112811]. In the case of a globally Lipschitz source terms, thanks to the Lp - Lq estimate method, we establish global in time well-posed results for mild solution. For the case of locally Lipschitz terms, we present existence and uniqueness results. Also, we show that our solution will blow up at a finite time. Finally, we present some numerical examples to illustrate the regularity and continuation of the solution based on the time variable.
dc.identifier.doi10.1051/mmnp/2021010
dc.identifier.issn1760-6101
dc.identifier.issn0973-5348
dc.identifier.scopusSCOPUS_ID:85103336770en
dc.identifier.urihttps://rlib.uctm.edu/handle/123456789/636
dc.language.isoen
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103336770&origin=inward
dc.titleOn the initial value problem for fractional Volterra integrodifferential equations with a Caputo-Fabrizio derivative
dc.typeArticle
oaire.citation.volume16
Files
Collections