A criterion to uniform stability for functional perturbed differential equations

creativework.keywordsFunctional differential equations, Functional perturbation, Lyapunov function, Stability
creativework.publisherAcademic Pressen
dc.contributor.authorAhmad A.
dc.contributor.authorHaider K.
dc.contributor.authorJavad N.
dc.contributor.authorZeinev A.
dc.date.accessioned2024-07-10T14:27:04Z
dc.date.accessioned2024-07-10T14:48:37Z
dc.date.available2024-07-10T14:27:04Z
dc.date.available2024-07-10T14:48:37Z
dc.date.issued2016-01-01
dc.description.abstractIn this paper we consider a class of non autonomous ODEs with a functional perturbation. For the unperturbed equation a Lyapunov function bounded by two quadratic forms is known. The Lipschitzean rate of the vector field along with some additional requirements to the derivatives of the Lyapunov function guarantee existence of uniform stable solutions. A sufficient condition that guarantees uniform stability of the zero-solution to the equation under consideration is discussed.
dc.identifier.doi10.12732/ijpam.v108i1.11
dc.identifier.issn1314-3395
dc.identifier.issn1311-8080
dc.identifier.scopusSCOPUS_ID:85015277677en
dc.identifier.urihttps://rlib.uctm.edu/handle/123456789/422
dc.language.isoen
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85015277677&origin=inward
dc.titleA criterion to uniform stability for functional perturbed differential equations
dc.typeArticle
oaire.citation.issue1
oaire.citation.volume108
Files
Collections