Slag quantity minimization in the pyrometallurgical production of anode copper

No Thumbnail Available
Date
2019-01-01
External link to pdf file
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85069767413&origin=inward
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Approximate mathematical models, numerical data and graphical results of conducted virtual planned experiments on a verified analytical mathematical model are presented in this article. Two adequate approximating polynomial mathematical models have been developed that can be used to optimize the beneficial product (mate) and to minimize the quantities of industrial waste (slag) in the pyrometallurgical processes of flash smelting of sulphide copper raw materials. The proposed mathematical models allow finding a number of Pareto - optimal solutions for components in charge in the metallurgical processes of sulfide copper concentrates flash smelting, which provide requirements for a maximum amount of mate and a minimum amount of slag. The approximation models can be used for operational planning, product optimization, process control and minimization of waste material flows.
Description
Keywords
Citation
Collections